Advertisement

Protein and Polyamine Metabolism in Reversible Cerebral Ischemia of Gerbils

  • Wulf Paschen
  • Yaxia Xie
  • Gabriele Röhn
  • Joachim Hallmayer
  • Konstantin-Alexander Hossmann

Abstract

The interruption of blood flow to the brain induces disturbances of brain metabolism [1] which are not immediately reversed after restoration of cerebral blood flow. The timecourses of ischemia-induced disturbances do vary, however, for different biochemical events. The recovery of energy metabolism is a fast process following short-term cerebral ischemia and the content of high energy phosphates is rapidly replenished after the onset of recirculation [2]. Inhibition of protein biosynthesis, in contrast, persisted for hours or even days after ischemia. [3–9]. The consequences of prolonged disturbances in protein biosynthesis are not known; however, it is obvious that persistent inhibition of protein biosynthesis must effect the integrity of the cell as long as the degradation of proteins is not reduced to the same extent as the biosynthesis.

Keywords

Cerebral Ischemia Protein Biosynthesis Ornithine Decarboxylase Mongolian Gerbil Polyamine Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lowry OH, Passonneau JV, Hasselberger FY, Schulz DW (1964) Effects of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239: 18–30PubMedGoogle Scholar
  2. 2.
    Siesjö BK (1978) Brain energy metabolism. Wiley, New YorkGoogle Scholar
  3. 3.
    Kleihues P, Hossmann K-A, Pegg AE, Kobayashi K, Zimmermann V (1975) Resuscitation of the monkey brain after one hour complete ischemia: III. Indications of metabolic recovery. Brain Res 95: 61–73PubMedCrossRefGoogle Scholar
  4. 4.
    Cooper HK, Zalewska T, Kawakami S, Hossmann K-A (1977) The effect of ischemia and recirculation on protein synthesis in the brain. J Neurochem 28: 929–934PubMedCrossRefGoogle Scholar
  5. 5.
    Dienel GA, Pulsinelli WA, Duffy TE (1980) Regional protein synthesis in rat brain following acute hemispheric ischemia. J Neurochem 35: 1216–1226PubMedCrossRefGoogle Scholar
  6. 6.
    Nowak TS, Fried RL, Lust WD, Passonneau JV (1985) Changes in brain energy metabolism and protein synthesis following transient bilateral ischemia in the gerbil. J Neurochem 44: 487–494PubMedCrossRefGoogle Scholar
  7. 7.
    Bodsch W, Takahashi K, Barbier A, Grosse Ophoff B, Hossmann K-A (1985) Cerebral protein synthesis and ischemia. Prog Brain Res 63: 197–210PubMedCrossRefGoogle Scholar
  8. 8.
    Thilmann R, Xie Y, Kleihues P, Kiessling M (1986) Persistent inhibition of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus. Acta Neuropathol (Berl) 71: 88–93CrossRefGoogle Scholar
  9. 9.
    Xie Y, Hossmann KA, Munekata K, Seo K (1987) Prolonged suppression of protein synthesis after brief cerebral ischemia in gerbils. In: Cervos-Navarro J, Ferszt R (eds) Stroke and microcirculation. Raven, New York pp 135–141Google Scholar
  10. 10.
    Nowak TS (1985) Synthesis of a stress protein following transient ischemia in the gerbil. J Neurochem 45: 1635–1641PubMedCrossRefGoogle Scholar
  11. 11.
    Dienel GA, Kiessling M, Jacewicz M, Pulsinelli WA (1986) Synthesis of heat shock proteins in rat brain cortex after transient ischemia. J Cereb Blood Flow Metab 6: 505–510PubMedCrossRefGoogle Scholar
  12. 12.
    Kiessling M, Dienel GA, Jacewicz M, Pulsinelli WA (1986) Protein synthesis in postischemic rat brain: A two-dimensional electrophoretic analysis. J Cereb Blood Flow Metab 6: 642–649PubMedCrossRefGoogle Scholar
  13. 13.
    Dienel GA, Cruz NF, Rosenfeld SJ (1985) Temporal profiles of proteins responsive to transient ischemia. J Neurochem 44: 600–610PubMedCrossRefGoogle Scholar
  14. 14.
    Paschen W, Röhn G, Meese CO, Djuricic B, Schmidt-Kastner R (1988) Polyamine metabolism in reversible cerebral ischemia: Effect of a-difluoromethylornithine. Brain Res 453: 9–16PubMedCrossRefGoogle Scholar
  15. 15.
    Pegg AE, Lockwood DH, Williams-Ashman HG (1970) Concentration of polyamines and their enzymic synthesis during androgen-induced prostatic growth. J Biochem 117: 17–31Google Scholar
  16. 16.
    Hallmayer J, Hossmann KA, Mies G (1985) Low dose of barbiturates for prevention of hippocampal lesions after brief ischemic episodes. Acta Neuropathol (Berl) 68: 2731CrossRefGoogle Scholar
  17. 17.
    Kirino T, Tamura A, Sano K (1986) A reversible type of neuronal injury following ischemia in the gerbil. Stroke 17: 455–459PubMedCrossRefGoogle Scholar
  18. 18.
    Paschen W, Hallmayer J, Röhn G (1988) Relationship between putrescine content and density of ischemic cell damage in the brain of Mongolian gerbils: Effect of nimodipine and barbiturate. Acta Neuropathol (Berl) 76: 388–394CrossRefGoogle Scholar
  19. 19.
    Paschen W, Hallmayer J, Röhn G (1988) Regional changes of polyamine profiles after reversible cerebral ischemia in Mongolian gerbils: Effects of nimodipine and barbiturate. Neurochem Pathol 8: 27–41Google Scholar
  20. 20.
    Djuricic BM, Paschen W, Schmidt-Kastner R (1988) Polyamines in the brain: HPLC analysis and its application in cerebral ischemia. Jugosl Physiol Pharmacol Acta 24: 917Google Scholar
  21. 21.
    Kleihues P, Hossmann K-A (1973) Regional incorporation of L-(3–3H)tyrosine into cat brain proteins after 1 hour of complete ischemia. Acta Neuropathol (Berl) 25: 313–324CrossRefGoogle Scholar
  22. 22.
    Bodsch W, Barbier A, Oehmichen M, Grosse Ophoff B, Hossmann K-A (1986) Recovery of monkey brain after prolonged ischemia: H. Protein synthesis and morphological alterations. J Cereb Blood Flow Metab 6: 15–21CrossRefGoogle Scholar
  23. 23.
    Smith CB, Deibler GE, Eng N, Schmidt K, Sokoloff L (1988) Measurement of local cerebral protein synthesis in vivo: Influence of recycling of amino acids derived from protein degradation. Proc Natl Acad Sci USA 85: 9341–9345Google Scholar
  24. 24.
    Hightower LE, White FP (1981) Cellular response to stress: comparison of a family of 71–73 kilodalton proteins rapidly synthesized in rat tissue slices and canavanine treated cells in culture. J Cell Physiol 108: 261–275PubMedCrossRefGoogle Scholar
  25. 25.
    Schlesinger MJ, Ashburner M, Tissueres A (eds) (1982) Heat shock from Bacteria to Man. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  26. 26.
    Cosgrove JW, Brown IR (1983) Heat shock protein in mammalian brain and other organs after physiologically relevant increase in body temperature induced by D- lysergic acid diethylamide. Proc Natl Acad Sei 80: 569–573CrossRefGoogle Scholar
  27. 27.
    Jänne J, Poso H, Raina A (1978) Polyamines in rapid growth and cancer. Biochim Biophys Acta 473: 241–293PubMedGoogle Scholar
  28. 28.
    Canellakis ES, Viceps-Madore D, Kyriakidis DA, Heller JS (1979) The regulation and function of ornithine decarboxylase and of the polyamines. Curr Top Cell Reg 15: 155–202Google Scholar
  29. 29.
    Seiler N (1981) Polyamine metabolism and function in the brain. Neurochem Int 3: 95–110PubMedCrossRefGoogle Scholar
  30. 30.
    Pegg AE, McCann PP (1982) Polyamine metabolism and function. Am J Physiol 243: C212 - C221PubMedGoogle Scholar
  31. 31.
    Dienel GA, Cruz NF (1984) Induction of brain ornithine decarboxylase during recovery from metabolic, mechanical, thermal or chemical injury. J Neurochem 42: 1053–1061PubMedCrossRefGoogle Scholar
  32. 32.
    Pelham HRB (1984) HSP 70 accelerates the recovery of nuclear morphology after heat shock. EMBO J 3: 3095–3100PubMedGoogle Scholar
  33. 33.
    Petito CK, Babiak T (1982) Early proliferative changes in astrocytes in postischemic noninfarcted rat brain. Ann Neurol 11: 510–518PubMedCrossRefGoogle Scholar
  34. 34.
    Dempsey RJ, Maley BE, Cowen DE, Olson JW (1988) Ornithine decarboxylase activity and immunohistochemical location in postischemic brain. J Cereb Blood Flow Metab 8: 843–847PubMedCrossRefGoogle Scholar
  35. 35.
    Nemeth G, Cintra A, Mayer G, Fuxe K, Hoyer S (1988) Characteristics of neurological deficits and behavioral impairments of rats induced by bilateral incomplete cerebral ischemia. In: Meyer JS, Lechner H, Reivich H, Ott EO (eds) Cerebrovascular disease 7. Excerpta Medica, pp 267–270Google Scholar
  36. 36.
    Paschen W, Schmidt-Kastner R, Djuricic B, Meese C, Linn F, Hossmann K-A (1987) Polyamine changes in reversible cerebral ischemia. J Neurochem 49: 35–37PubMedCrossRefGoogle Scholar
  37. 37.
    Paschen W, Hallmayer J, Mies G (1987) Regional profile of polyamines in reversible cerebral ischemia of Mongolian gerbils. Neurochem Pathol 7: 143–156PubMedCrossRefGoogle Scholar
  38. 38.
    Frydman B, Frydman RB, De Los Santos C, Alonso Garrids D, Goldemberg SH, Algranti ID (1984) Putrescine distribution in Escherichia coli studied in vivo by 13 C nuclear magnetic resonance. Biochim Biophys Acta 805: 337–344PubMedCrossRefGoogle Scholar
  39. 39.
    Iqbal Z, Koenig H (1985) Polyamines appear to be second messengers in mediating Ca2+ fluxes and neurotransmitter release in potassium-depolarized synaptosomes. Biochem Biophys Res Commun 133: 563–573PubMedCrossRefGoogle Scholar
  40. 40.
    Bondy SC, Walker CH (1986) Polyamines contribute to calcium-stimulated release of aspartate from brain particulate fractions. Brain Res 371: 96–100PubMedCrossRefGoogle Scholar
  41. 41.
    Komulainen H, Bondy SC (1987) Transient elevation of intrasynapto-somal free calcium by putrescine. Brain Res 401: 50–54PubMedCrossRefGoogle Scholar
  42. 42.
    Nistico G, Jentile R, Rotiroti D, Di Giorgio RM (1980) GABA depletion and behavioral changes produced by intraventricular putrescine in chicks. Biochem Pharmacol 29: 954–957PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Wulf Paschen
  • Yaxia Xie
  • Gabriele Röhn
  • Joachim Hallmayer
  • Konstantin-Alexander Hossmann
    • 1
  1. 1.Department of Experimental NeurologyMax-Planck-Institute for Neurological ResearchCologne 41Federal Republic of Germany

Personalised recommendations