Metabolic Derangement and Cell Damage in Cerebral Ischemia with Emphasis on Protein and Nucleic Acid Metabolism

  • Takehiko Yanagihara


Brain resuscitation is an important issue in a clinical practice dealing with patients with cardiac arrest, asphyxia and stroke. Since an increasing number of patients with cardiac arrest have been resuscitated successfully, prevention and treatment of postischemic damage associated with cardiac arrest should be addressed critically. If the thrombolytic agents such as a tissue-type plasminogen activator and streptokinase prove to be safe and effective to recanalize the thrombosed cerebral arteries, prevention of post-reperfusion damage will become an important issue. While the advances in modern technology, such as positron emission tomography and nuclear magnetic resonance spectroscopy, have provided us opportunities to study metabolic derangements associated with cerebral ischemia and hypoxia, in some instances involving human patients, such investigations immediately after cardiac arrest or stroke are often technically difficult and may be unethical. Therefore, we have to rely on animal models to clarify the molecular mechanism for selective cerebral tissue vulnerability and to find rational ways to resuscitate damaged brains. In this presentation, I will first review animal experimental models and metabolic derangements associated with cerebral ischemia and hypoxia, and then review protein and RNA metabolism during and following cerebral ischemia and hypoxia, as well as their relationship to various metabolic derangements. Finally, I will discuss some aspects of structural damage which may be related to suppression of protein synthesis and intracellular transport.


Cerebral Ischemia Metabolic Derangement Cereb Blood Flow Ischemic Period Carotid Occlusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hossmann K-A, Sato K (1970) Recovery of neuronal function after prolonged cerebral ischemia. Science 168: 375–376PubMedCrossRefGoogle Scholar
  2. 2.
    Kramer RS, Sanders AP, Lasage AM, Woodhall B, Sealy WC (1968) The effect of profound hypothermia on preservation of cerebral ATP content during circulatory arrest. J Thorac Cardiovasc Surg 56: 699–709PubMedGoogle Scholar
  3. 3.
    Hossmann K-A, Kleihues P (1973) Reversibility of ischemic brain damage. Arch Neurol 29: 375–384PubMedCrossRefGoogle Scholar
  4. 4.
    Ljunggren B, Schutz H, Siesjö BK (1974) Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia. Brain Res 73: 277–289PubMedCrossRefGoogle Scholar
  5. 5.
    Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10: 267–272PubMedCrossRefGoogle Scholar
  6. 6.
    Harvey J, Rasmussen T (1951) Occlusion of the middle cerebral artery: An experimental study. Arch Neurol Psychiat 66: 20–29Google Scholar
  7. 7.
    Sundt TM Jr, Waltz AG (1966) Experimental cerebral infarction: Retro-orbital, extradural approach for occluding the middle cerebral artery. Mayo Clin Proc 41: 159–168PubMedGoogle Scholar
  8. 8.
    Symon L, Dorsch NWC, Crockard HA (1975) The production and clinical features of a chronic stroke model in experimental primates. Stroke 6: 476–481PubMedCrossRefGoogle Scholar
  9. 9.
    Crowell RM, Olsson Y (1973) Effect of extracranial intracranial vascular bypass graft on experimental acute stroke in dogs. J Neurosurg 38: 26–31PubMedCrossRefGoogle Scholar
  10. 10.
    Yamamoto K, Yoshimine T, Yanagihara T (1985) Cerebral ischemia in rabbit: A new experimental model with immunohistochemical investigation. J Cereb Blood Flow Metab 5: 529–536Google Scholar
  11. 11.
    Tamura A, Graham DI, McCulloch J, Teasdale GM (1981) Focal cerebral ischemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1: 53–60PubMedCrossRefGoogle Scholar
  12. 12.
    Levine S, Payan H (1966) Effects of ischemia and other procedures on the brain and retina of the gerbil (Meriones unguiculatus). Exp Neurol 16: 255–262PubMedCrossRefGoogle Scholar
  13. 13.
    Yoshimine T, Yanagihara T (1983) Regional cerebral ischemia by occlusion of the posterior communicating artery and the middle cerebral artery in gerbils. J Neurosurg 58: 362–367PubMedCrossRefGoogle Scholar
  14. 14.
    Yamada K, Hayakawa T, Yoshimine T, Ushio Y (1984) A new model of transient hindbrain ischemia in gerbils. J Neurosurg 60: 1054–1058PubMedCrossRefGoogle Scholar
  15. 15.
    Yanagihara T (1978) Experimental stroke in gerbils: Correlation of clinical, pathological and electroencephalographic findings and protein synthesis. Stroke 9: 155–159PubMedCrossRefGoogle Scholar
  16. 16.
    Matsumoto M, Hatakeyama T, Akai F, Brengman JM, Yanagihara T (1988) Prediction of stroke before and after unilateral occlusion of the common carotid artery in gerbils. Stroke 19: 490–497PubMedCrossRefGoogle Scholar
  17. 17.
    Gurdjian ES, Stone WE, Webster JE (1944) Cerebral metabolism in hypoxia. Arch Neurol Psychiat 51: 472–477Google Scholar
  18. 18.
    Siesjö BK, Nilsson L (1971) The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentrations in the rat brain. Scand J Clin Lab Invest 27: 83–96PubMedCrossRefGoogle Scholar
  19. 19.
    Yanagihara T (1973) Cerebral anoxia: An improved in vitro model for biochemical study. Stroke 4: 409–411PubMedCrossRefGoogle Scholar
  20. 20.
    Yanagihara T (1974) Protein metabolism in the neuronal and neuroglial fractions of rabbit brain during hypoxia. Trans Am Soc Neurochem 5: 108Google Scholar
  21. 21.
    Yanagihara T (1979) Protein and RNA synthesis and precursor uptake with isolated nerve and glia cells. J Neurochem 32: 169–177PubMedCrossRefGoogle Scholar
  22. 22.
    Rothman S (1983) Synaptic activity mediates death of hypoxia neurons. Science 220: 536–537PubMedCrossRefGoogle Scholar
  23. 23.
    Goldberg MP, Weiss JH, Phuong-Chi P, Choi DW (1987) N-methyl-D-aspartate receptors mediate hypoxie neuronal injury in cortical culture. J Pharmacol Exp Ther 243: 784–791PubMedGoogle Scholar
  24. 24.
    Lowry OH, Passonneau JV, Hasselberger FX, Schultz DW (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239: 18–30PubMedGoogle Scholar
  25. 25.
    Duffy TE, Nelson SR, Lowry OH (1972) Cerebral carbohydrate metabolism during acute hypoxia and recovery. J Neurochem 19: 959–977PubMedCrossRefGoogle Scholar
  26. 26.
    Ueda H, Hashimoto T, Furuya E, Tagawa K, Kitagawa K, Matsumoto M, Yoneda S, Kimura K, Kamada T (1988) Changes in aerobic and anaerobic ATP-synthesizing activities in hypoxic mouse brain. J Biochem 104: 81–86PubMedGoogle Scholar
  27. 27.
    Mrsulja BB, Mrsulja BJ, Ito U, Walker JTJr, Spatz M, Klatzo I (1975) Experimental cerebral ischemia in Mongolian gerbils II: Changes in carbohydrates. Acta Neuropathol (Berl) 33: 91–103CrossRefGoogle Scholar
  28. 28.
    Mrsulja BB, Lust WD, Mrsulja BJ, Passonneau JV, Klatzo I (1976) Post-ischemic changes in certain metabolites following prolonged ischemia in the gerbil cerebral cortex. J Neurochem 26: 1099–1103CrossRefGoogle Scholar
  29. 29.
    Levy DE, Duffy TE (1977) Cerebral energy metabolism during transient ischemia and recovery in the gerbil. J Neurochem 28: 63–70PubMedCrossRefGoogle Scholar
  30. 30.
    Nowak TS Jr, Fried RL, Lust WD, Passonneau JV (1985) Changes in brain energy metabolism and protein synthesis following transient bilateral ischemia in the gerbil. J Neurochem 44: 487–494PubMedCrossRefGoogle Scholar
  31. 31.
    Brengman JM, Morimoto K, Yanagihara T (1988) Purine nucleotides and phosphocreatine in postischemic gerbil brain. Trans Am Soc Neurochem 19: 147Google Scholar
  32. 32.
    Hatakeyama T, Matsumoto M, Brengman JM, Yanagihara T (1988) Immunohistochemical investigation of ischemic and postischemic damage after bilateral carotid occlusion in gerbils. Stroke 19: 1526–1534PubMedCrossRefGoogle Scholar
  33. 33.
    Meyer FB, Anderson RE, Sundt TM Jr, Yaksh TL (1986) Intracellular brain pH, indicator tissue perfusion, electroencephalography and histology in severe and moderate focal cortical ischemia in the rabbit. J Cereb Blood Flow Metab 6: 71–78PubMedCrossRefGoogle Scholar
  34. 34.
    Kawashima J, Nakamura K, Fujitani B, Kadokawa T, Yoshida K, Shimizu M (1978) Relationship between cerebral energy failure and free fatty acid accumulation following prolonged brain ischemia. Jpn J Pharmacol 28: 277–287CrossRefGoogle Scholar
  35. 35.
    Petito CK, Kraig RP, Pulsinelli WA (1987) Light and electron microscopic evaluation of hydrogen ion-induced brain necrosis. J Cereb Blood Flow Metab 7: 625–632PubMedCrossRefGoogle Scholar
  36. 36.
    Siemkowicz E, Hansen AJ (1978) Clinical restitution following cerebral ischemia in hypo-, normo-and hyperglycemic rats. Acta Neurol Scand 58: 1–8PubMedCrossRefGoogle Scholar
  37. 37.
    Schurr A, Dong W-Q, Reid KH, West CA, Rigor BM (1988) Lactic acidosis and recovery of neuronal function following cerebral hypoxia in vitro. Brain Res 438: 311–314PubMedCrossRefGoogle Scholar
  38. 38.
    Prado R, Ginsberg MD, Dietrich WD, Watson BD, Busto R (1988) Hyperglycemia increases infarct size in collaterally perfused but not end-arterial vascular territories. J Cereb Blood Flow Metab 8: 186–192PubMedCrossRefGoogle Scholar
  39. 39.
    Harris RJ, Symon L, Branston NM, Bayhan M (1981) Changes in extracellular activity in cerebral ischemia. J Cereb Blood Flow Metab 1: 203–209PubMedCrossRefGoogle Scholar
  40. 40.
    Yanagihara T, McCall JT (1982) Ionic shift in cerebral ischemia. Life Sci 30: 1921–1925PubMedCrossRefGoogle Scholar
  41. 41.
    Hossmann K-A, Paschen W, Csiba L (1983) Relationship between calcium accumulation and recovery of cat brain after prolonged cerebral ischemia. J Cereb Blood Flow Metab 3: 346–353PubMedCrossRefGoogle Scholar
  42. 42.
    Dienel GA (1984) Regional accumulation of calcium in postischemic rat brain. J Neurochem 43: 913–925PubMedCrossRefGoogle Scholar
  43. 43.
    Martins E, Inamura K, Themner K, Malmqvist KG, Siesjö BK (1988) Accumulation of calcium and loss of potassium in the hippocampus following transient cerebral ischemia: A proton microprobe study. J Cereb Blood Flow Metab 8: 531–538PubMedCrossRefGoogle Scholar
  44. 44.
    Farber JL (1981) The role of calcium in cell death. Life Sci 29: 1289–1295PubMedCrossRefGoogle Scholar
  45. 45.
    Connor, JA, Wadman WJ, Hockberger PE, Wong RKS (1988) Sustained dendritic gradients of Cat + induced by excitatory amino acids in CA1 hippocampal neurons. Science 240: 649–653PubMedCrossRefGoogle Scholar
  46. 46.
    Choi DW, Maulucci-Gedde MA, Kriegstein AR (1987) Glutamate neurotoxicity in cortical cell culture. J Neurosci 7: 369–379PubMedGoogle Scholar
  47. 47.
    Choi DW (1987) Ionic dependence of glutamate neurotoxicity in cortical cell culture. J Neurosci 7: 380–390Google Scholar
  48. 48.
    Bâzan NG Jr (1970) Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim Biophys Acta 218: 1–10PubMedGoogle Scholar
  49. 49.
    Yoshida S, Inoh S, Asano T, Sano K, Kubota M, Shimazaki H, Ueta N (1980) Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain: Lipid peroxidation as a possible cause of postischemic injury. J Neurosurg 53: 323–331PubMedCrossRefGoogle Scholar
  50. 50.
    Abe K, Kogure K, Yamamoto H, Imazawa M, Miyamoto K (1987) Mechanism of arachidonic acid liberation during ischemia in gerbil cerebral cortex. J Neurochem 48: 503–509PubMedCrossRefGoogle Scholar
  51. 51.
    Gaudet RJ, Levine L (1980) Effect of unilateral common carotid artery occlusion on levels of prostaglandins D2 Fes,. and 6-keto-prostaglandin F1 in gerbil brain. Stroke 11: 648–652PubMedCrossRefGoogle Scholar
  52. 52.
    Moskowitz MA, Kiwak KJ, Hekimian K, Levine L (1984) Synthesis of compounds with properties of leukotrienes C4 and D4 in gerbil brains after ischemia and reperfusion. Science 224: 886–889PubMedCrossRefGoogle Scholar
  53. 53.
    McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312: 159–163PubMedCrossRefGoogle Scholar
  54. 54.
    Kontos HA (1985) Oxygen radicals in cerebral vascular injury. Circ Res 57: 508–516PubMedGoogle Scholar
  55. 55.
    Davies KJA (1987) Protein damage and degradation by oxygen radicals. 1. General aspects. J Biol Chem 262: 9895–9901PubMedGoogle Scholar
  56. 56.
    Burton KP (1988) Evidence of direct toxic effects of free radicals on the myocardium. Free Radical Biol Med 4: 15–24CrossRefGoogle Scholar
  57. 57.
    Zweier JL, Kuppusamy P, Lutty GA (1988) Measurement of endothelial cell free radical generation: Evidence for a central mechanism of free radical injury in postischemic tissues. Proc Natl Acad Sci USA 85: 4046–4050PubMedCrossRefGoogle Scholar
  58. 58.
    Patt A, Harken AH, Burton LK, Rodell TC, Piermattel D, Schorr WJ, Parker NB, Berger EM, Horesh IR, Terada LS, Linas SL, Cheronis JC, Repine JE (1988) Xanthine oxidase-derived hydrogen peroxide contributes to ischemia reperfusion-induced edema in gerbil brains. J Clin Invest 81: 1556–1562PubMedCrossRefGoogle Scholar
  59. 59.
    Pain VM (1986) Initiation of protein synthesis in mammalian cells. Biochem J 235: 625–637PubMedGoogle Scholar
  60. 60.
    Sanders AP, Hale DM, Miller AT Jr (1965) Some effects of hypoxia on respiratory metabolism and protein synthesis in rat tissues. Am J Physiol 209: 443–446PubMedGoogle Scholar
  61. 61.
    Yap S-L, Spector RG (1965) Cerebral protein synthesis in anoxic-ischaemic brain injury in the rat. J Path Bact 90: 543–549PubMedCrossRefGoogle Scholar
  62. 62.
    Blomstrand C (1970) Effect of hypoxia on protein metabolism in neuron and neuroglia cell-enriched fractions from rabbit brain. Exp Neurol 29: 175–188PubMedCrossRefGoogle Scholar
  63. 63.
    Kleihues P, Hossmann K-A (1971) Protein synthesis in the cat brain after prolonged cerebral ischemia. Brain Res 35: 409–418PubMedCrossRefGoogle Scholar
  64. 64.
    Kleihues P, Hossmann K-A (1973) Regional incorporation of L — [3 — 3H] tyrosine into cat brain proteins after 1 hour of complete ischemia. Acta Neuropathol (Berl) 25: 313–324CrossRefGoogle Scholar
  65. 65.
    Yanagihara T (1972) Cerebral anoxia: Protein metabolism during recovery in in vitro model. Stroke 3: 733–738PubMedCrossRefGoogle Scholar
  66. 66.
    Yanagihara T (1974) Cerebral anoxia: Effect on transcription and translation. J Neurochem 22: 113–117PubMedCrossRefGoogle Scholar
  67. 67.
    Yanagihara T (1976) Cerebral ischemia in gerbils: differential vulnerability of protein, RNA, and lipid synthesis. Stroke 7: 260–263CrossRefGoogle Scholar
  68. 68.
    Yoshimine T, Hayakawa T, Kato A, Yamada K, Matsumoto K, Ushio Y, Mogami H (1987) Autoradiographic study of regional protein synthesis in focal cerebral ischemia with TCA wash and image subtraction techniques. J Cereb Blood Flow Metab 7: 387–393PubMedCrossRefGoogle Scholar
  69. 69.
    Metter E J, Yanagihara T (1979) Protein synthesis in rat brain in hypoxia, anoxia and hypoglycemia. Brain Res 161: 481–492PubMedCrossRefGoogle Scholar
  70. 70.
    Yanagihara T (1976) Cerebral anoxia: effect on neuron-glia fractions and polysomal protein synthesis. J Neurochem 27: 539–543PubMedCrossRefGoogle Scholar
  71. 71.
    Yanagihara T (1978) Experimental stroke in gerbils: effect on translation and transcription. Brain Res 158: 435–444PubMedCrossRefGoogle Scholar
  72. 72.
    Morimoto K, Yanagihara T (1981) Cerebral ischemia in gerbils: polyribosomal function during progression and recovery. Stroke 12: 105–110PubMedCrossRefGoogle Scholar
  73. 73.
    Cooper HK, Zalewska T, Kawakami S, Hossmann K-A, Kleihues P (1977) The effect of ischemia and recirculation on protein synthesis in the rat brain. J Neurochem 28: 929–934PubMedCrossRefGoogle Scholar
  74. 74.
    Morimoto K, Mogami H, Brengman JM, Yanagihara T (1981) Molecular dysfunction following re-circulation in cerebral ischemia. Excerpta Medica International Congress Series No. 548, p 73Google Scholar
  75. 75.
    Nowak TS Jr (1985) Synthesis of a stress protein following transient ischemia in the gerbil. J Neurochem 45: 1635–1641PubMedCrossRefGoogle Scholar
  76. 76.
    Nowak TS Jr, Vass K, Welch WJ (1987) Localization of 70 KDa heat shock protein induction in gerbil brain after transient ischemia. Soc Neurosci Abstracts 13: 1688Google Scholar
  77. 77.
    Smith CB, Crane AM, Kadekaro M, Agranoff BW, Sokoloff L (1984) Stimulation of protein synthesis and glucose utilization in the hypoglossal nucleus induced by axotomy. J Neurosci 4: 2489–2496PubMedGoogle Scholar
  78. 78.
    Mies G, Bodsch W, Paschen W, Hossmann K-A (1986) Triple-tracer autoradiography of cerebral blood flow, glucose utilization, and protein synthesis in rat brain. J Cereb Blood Flow Metab 6: 59–70PubMedCrossRefGoogle Scholar
  79. 79.
    Xie Y, Munekata K, Seo K, Hossmann K-A (1988) Effect of autologous clot embolism on regional protein biosynthesis of monkey brain. Stroke 19: 750–757PubMedCrossRefGoogle Scholar
  80. 80.
    Dienel GA, Pulsinelli WA, Duffy TE (1980) Regional protein synthesis in rat brain following acute hemispheric ischemia. J Neurochem 35: 1216–1226PubMedCrossRefGoogle Scholar
  81. 81.
    Thilmann R, Xie Y, Kleihues P, Kiessling M (1986) Persistent inhibition of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus. Acta Neuropathol (Berl) 71: 88–93CrossRefGoogle Scholar
  82. 82.
    Morimoto K, Brengman J, Yanagihara T (1978) Further evaluation of polypeptide synthesis in cerebral anoxia, hypoxia and ischemia. J Neurochem 31: 1277–1282PubMedCrossRefGoogle Scholar
  83. 83.
    Albrecht J, Yanagihara T (1979) Effect of anoxia and ischemia on ribonuclease activity in brain. J Neurochem 32: 1131–1133PubMedCrossRefGoogle Scholar
  84. 84.
    Yoshimine T, Brengman J, Yanagihara T (1981) Correlation of the integrity of poly-ribosomes and protein synthesis. Trans Am Soc Neurochem 12: 206Google Scholar
  85. 85.
    Austin SA, Pollard JW, Jagus R, Clemens MJ (1986) Regulation of polypeptide chain initiation and activity of initiation factor eIF-2 in Chinese-hamster-ovary cell mutants containing temperature-sensitive aminoacyl-tRNA synthetases. Eur J Biochem 157: 39–47PubMedCrossRefGoogle Scholar
  86. 86.
    Yanagihara T (1980) Phosphorylation of chromatin proteins in cerebral anoxia and ischemia. J Neurochem 35: 1209–1215PubMedCrossRefGoogle Scholar
  87. 87.
    Albrecht J, Yanagihara T (1978) Effect of cerebral anoxia and ischemia on messenger RNA metabolism. Trans Am Soc Neurochem 9: 147Google Scholar
  88. 88.
    Thrall CL, Yanagihara T (1984) Nuclear binding sites for triiodothyronine in the gerbil brain following ischemia and recirculation. Brain Res 301: 179–183PubMedCrossRefGoogle Scholar
  89. 89.
    Yanagihara T, Yoshimine T, Morimoto K, Yamamoto K, Homburger HA (1985) Immunohistochemical investigation of cerebral ischemia in gerbils. J Neuropath Exp Neurol 44: 204–215PubMedCrossRefGoogle Scholar
  90. 90.
    Yoshimine T, Morimoto K, Brengman JM, Homburger HA, Mogami H, Yanagihara T (1985) Immunohistochemical investigation of cerebral ischemia during recirculation. J Neurosurg 63: 922–928PubMedCrossRefGoogle Scholar
  91. 91.
    Matsumoto M, Yamamoto K, Homburger HA, Yanagihara T (1987) Early detection of cerebral ischemic damage and repair process in the gerbil by use of an immunohistochemical technique. Mayo Clin Proc 62: 460–472PubMedGoogle Scholar
  92. 92.
    Yamamoto K, Morimoto K, Yanagihara T (1986) Cerebral ischemia in the gerbil: Transmission electron microscopic and immunoelectron microscopic investigation. Brain Res 384: 1–10Google Scholar
  93. 93.
    Akai F, Yanagihara T (1986) Electron microscopic study of regional cerebral ischemia in the gerbil after occlusion of a posterior communicating artery (abstract). Xth Internat Congress Neuropath, p 119Google Scholar
  94. 94.
    Dodson RF, Chu LWF, Welch KMA, Achar VS (1977) Acute tissue response to cerebral ischemia in the gerbil: An ultrastructural study. J Neurol Sci 33: 161–170PubMedCrossRefGoogle Scholar
  95. 95.
    Weiss P (1944) Damming of axoplasm in constricted nerve: a sign of perpetual growth in nerve fibers. Anat Rec 88: 464CrossRefGoogle Scholar
  96. 96.
    Globus A, Lux HD, Schubert P (1968) Somadendritic spread of intracellularly injected tritiated glycine in cat spinal motoneurons. Brain Res 11: 440–445PubMedCrossRefGoogle Scholar
  97. 97.
    Schubert P, Kreutzberg GW, Lux HD (1971) Neuroplasmic transport in dendrites: Effect of colchicine on morphology and physiology of motoneurones in the cat. Brain Res 47: 331–343CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Takehiko Yanagihara
    • 1
  1. 1.Department of NeurologyMayo Clinic and Mayo Medical SchoolRochesterUSA

Personalised recommendations