N-Methyl-D-Aspartate Excitotoxicity: Is It Important in Ischemic Neuronal Injury?

  • Alastair M. Buchan
  • William A. Pulsinelli


The decline in the incidence of stroke is attributable to the detection and modification of risk factors, the treatment of heart disease, and prophylaxis with aspirin. New technology, particularly through brain and blood vessel imaging, has allowed prompt assessment of stroke patients but, inspite of this, we are still without an effective treatment for acute cerebral ischemia. While thrombolytic therapy has become an established treatment for patients with acute myocardial ischemia, in order to use it effectively in cerebral ischemia there is a need for “neuronal cyto-protective agents”. Successful brain resuscitation must stabilize neurons during ischemia, arrest the evolution of delayed ischemic neuronal death, and prevent reperfusion injury.


Nerve Growth Factor Focal Ischemia Cereb Blood Flow Perforant Path Forebrain Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spielmeyer W (1925) Zur Pathogenes der Ortlich Elecktiven Gehirnveränderungen. Z Ges Neurol Psychiatr 99: 756–777CrossRefGoogle Scholar
  2. 2.
    Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11: 491–498PubMedCrossRefGoogle Scholar
  3. 3.
    Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 237: 57–69CrossRefGoogle Scholar
  4. 4.
    Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain—focus on NMDA receptors. TINS 10: 263–265Google Scholar
  5. 5.
    Rothman SM, Olney JW (1987) Excitotoxicity and the NMDA receptor. TINS 10: 299–302Google Scholar
  6. 6.
    Ascher P, Nowak L (1987) Electrophysiological studies of NMDA receptors. TINS 10: 284–287Google Scholar
  7. 7.
    Siesjö B, Bengtsson F (1989) Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: A unifying hypothesis. J Cereb Blood Flow Metab 9: 127–140Google Scholar
  8. 8.
    Pulsinelli WA, Buchan A (1989) The utility of animal ischemia models in predicting pharmacotherapeutic response in the clinical setting. In: Ginsberg MD, Dietrich WD (eds) Cerebrovascular diseases. Raven, New York, pp 87–91Google Scholar
  9. 9.
    Pulsinelli WA, Duffy TE (1983) Regional energy balance in rat brain after transient forebrain ischemia. J Neurochem 40: 1500–1503PubMedCrossRefGoogle Scholar
  10. 10.
    Petito CK, Feldmann E, Pulsinelli WA, Plum F (1987) Delayed hippocampal damage in humans following cardiopulmonary arrest. Neurology 37: 1281–1286PubMedGoogle Scholar
  11. 11.
    Rothman SM (1983) Synaptic activity mediates death of hypoxic neurons. Science 220: 536–537.PubMedCrossRefGoogle Scholar
  12. 12.
    Rothman SM (1985) The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J Neurosci 5 (6): 1483–1489PubMedGoogle Scholar
  13. 13.
    Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58: 293–297PubMedCrossRefGoogle Scholar
  14. 14.
    Choi DW, Koh J-Y, Peters S (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: Attenuation by NMDA antagonists. J Neurosci 8: 185–196Google Scholar
  15. 15.
    Choi DW, Peters S, Viseskul V (1987) Dextrorphan and Levorphanol selectively block N-methyl-D-aspartate receptor-mediated neurotoxicity on cortical neurons. J Pharmacol Exp Ther 242: 713–720PubMedGoogle Scholar
  16. 16.
    Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374PubMedCrossRefGoogle Scholar
  17. 17.
    Silverstein FS, Buchanan K, Johnston MV (1985) Hypoxia-ischemia causes severe but reversible depression of striatal synaptosomal 3H-glutamate uptake. Ann Neurol 18: 122Google Scholar
  18. 18.
    Westerberg E, Monaghan DT, Cotman CW, Wieloch T (1987) Excitatory amino acid receptors and ischemic brain damage in the rat. Neurosci Lett 73: 119–124PubMedCrossRefGoogle Scholar
  19. 19.
    Monaghan DT, Cotman CW (1985) Distribution of N-methyl-D-aspartate-sensitive L-[3H]glutamate-binding sites in rat brain. J Neurosci 5: 2909–2919PubMedGoogle Scholar
  20. 20.
    Van Harreveld A, Fifkova E. (1970): Glutamate release from the retina during spreading depression. J Neurobiol 2: 13–29PubMedCrossRefGoogle Scholar
  21. 21.
    Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of N-methyl-Daspartate receptors may protect against ischemic damage in the brain. Science 226: 850–852PubMedCrossRefGoogle Scholar
  22. 22.
    Swan JH, Evans MC, Meldrum BS (1988) Long-term development of selective neuronal loss and the mechanism of protection by 2-amino-7-phosphonoheptanoate in a rat model of incomplete forebrain ischemia. J Cereb Blood Flow Metab 8: 64–78PubMedCrossRefGoogle Scholar
  23. 23.
    Block GA, Pulsinelli WA (1987) N-methyl-D-aspartate receptor antagonists: Failure to prevent ischemia-induced selective neuronal damage. In: Raichle ME, Powers WJ, (eds) Cerebrovascular diseases. Raven, New York, 37–42Google Scholar
  24. 24.
    Wong EHF, Kemp JA, Priestley T, Knight AR, Woodruff GN, Iversen LL (1986) The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc Natl Acad Sci USA 83: 7104–7108PubMedCrossRefGoogle Scholar
  25. 25.
    Rod MR, Auer RN (1989) Pre-and post-ischemic administration of dizocilpine (MK-801) reduces cerebral necrosis in the rat. Can J Neurol Sci 16: 340–344PubMedGoogle Scholar
  26. 26.
    Gill R, Foster AC, Woodruff GN (1987) Systemic administration of MK-801 protects against ischemia-induced hippocampal neurogeneration in the gerbil. J Neurosci 7: 3343–3349PubMedGoogle Scholar
  27. 27.
    Gill R, Foster AC, Woodruff GN (1988) MK-801 is neuroprotective in gerbils when administered during the post-ischemic period. Neuroscience 25: 847–855PubMedCrossRefGoogle Scholar
  28. 28.
    Ozyurt E, Graham DI, Woodruff GN, McCulloch J (1988): Protective effect of the glutamate antagonist, MK-801 in focal cerebral ischemia in the cat. J Cereb Blood Flow Metab 8: 138–143PubMedCrossRefGoogle Scholar
  29. 29.
    Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J (1988) The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann Neurol 24: 543–551PubMedCrossRefGoogle Scholar
  30. 30.
    Buchan AM, Li H, Pulsinelli WA (1991) The N-methyl-D-aspartate antagonist, MK-801, fails to protect against neuronal damage caused by transient severe forebrain ischemia in adult rats. J Neurosci in pressGoogle Scholar
  31. 31.
    Buchan AM, Pulsinelli WA (1990) Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci 10: 311–316PubMedGoogle Scholar
  32. 32.
    Germano IM, Pitts LH, Meldrum BS, Bartkowski HM, Simon RP (1987) Kynurenate inhibition of cell excitation decreases stroke size and deficits. Ann Neurol 22: 730–734PubMedCrossRefGoogle Scholar
  33. 33.
    Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J (1988) Focal cerebral ischemia in the cat: Treatment with the glutamate antagonist MK-801 after induction of ischemia. J Cereb Blood Flow Metab 8: 757–762PubMedCrossRefGoogle Scholar
  34. 34.
    Steinberg GK, Saleh J, Kunis D (1988) Delayed treatment with dextromethorphan and dextrorphan reduces cerebral damage after transient focal ischemia. Neurosci Lett 89: 193–197PubMedCrossRefGoogle Scholar
  35. 35.
    George CP, Goldberg MP, Choi DW, Steinberg GK (1988) Dextromethorphan reduces neocortical ischemia neuronal damage in vivo. Brain Res 440: 375–379PubMedCrossRefGoogle Scholar
  36. 36.
    Dirnagl U, Tanabe J, Pulsinelli WA (1990) MK-801, an NMDA receptor antagonist protects against focal cerebral infarction. Bra in ResGoogle Scholar
  37. 37.
    Buchan AM, Xue D, Slivka A, Zhang C, Hamilton J, Gelb A (1989) MK-801 increases cerebral blood flow in a rat model of temporary focal cortical ischemia (abstract). Soc Neurosci Abstract 15: 804.Google Scholar
  38. 38.
    Wieloch T, Gustafson I, Westerberg E, (1989) The NMDA antagonist, MK-801, is cerebro-protective in situations where some energy production prevails but not under conditions of complete energy deprivation. J Cereb Blood Flow Metab 9 (Supp 1): S6Google Scholar
  39. 39.
    Wieloch T, Lindvall O, Blomquist P, Gage FH (1985) Evidence for amelioration of ischemic neuronal damage in the hippocampal formation by lesions of the perforant path. Neurol Res 7: 24–26PubMedGoogle Scholar
  40. 40.
    Jorgensen MB, Johansen FF, Diemer NH (1987) Removal of the entorhinal cortex protects hippocampal CA-1 neurons from ischemic damage. Acta Neuropathol (Berl) 73: 189–194CrossRefGoogle Scholar
  41. 41.
    Johansen FF, Jorgensen MB, Diemer NH (1986) Ischemic CA-1 pyramidal cell loss is prevented by preischemic colchicine destruction of dentate gyrus granule cells. Brain Res 377: 344–347PubMedCrossRefGoogle Scholar
  42. 42.
    Onodera H, Sato G, Kogure K (1986) Lesions to Schaffer collaterals prevent ischemic death of CA1 pyramidal cells. Neurosci Lett 68: 169–174PubMedCrossRefGoogle Scholar
  43. 43.
    Buchan AM, Pulsinelli WA (1990) Septo-hippocampal deafferentation protects CA1 neurons against ischemic injury. Brain Res 512: 7–14PubMedCrossRefGoogle Scholar
  44. 44.
    Buchan AM, Pulsinelli WA (1989) Fimbria/fornix lesions: The temporal profile for protection of CA1 hippocampus against ischemic injury. J Cereb Blood Flow Metab 9 (Supp 1): S749Google Scholar
  45. 45.
    Korsching S, Heumann R, Thoenen H, Hefti F (1986) Cholinergic denervation of the rat hippocampus by fimbrial transection leads to a transient accumulation of nerve growth factor ( NGF) without change in mRNA NGF content. Neurosci Lett 66: 175–180Google Scholar
  46. 46.
    Buchan AM, Williams L, Bruederlin B (1990) Nerve growth factor: Pretreatment ameliorates ischemic hippocampal neuronal injury. Stroke 21: 177Google Scholar
  47. 47.
    Stenevi U, Bjorklund A (1978) Growth of vascular sympathetic axons into the hippo-campus after lesions of the septo-hippocampal pathway: A pitfall in brain lesions studies. Neurosci Lett 7: 219–224Google Scholar
  48. 48.
    Gustafson I, Miyauchi Y, Wieloch TW (1989) Postischemic administration of idazoxan: An a-2 adrenergic receptor antagonist, decreases neuronal damage in the rat brain. J Cereb Blood Flow Metab 9: 171–174PubMedCrossRefGoogle Scholar
  49. 49.
    Kemp JA, Foster AC, Wong HF (1987) Non-competitive antagonists of excitatory amino acid receptors. Trends Neurosci 10: 294–298CrossRefGoogle Scholar
  50. 50.
    Wieloch T (1985) Neurochemical correlates to selective neuronal vulnerability. In: Kogure K, Hossman KA, Siesjö BK, Welsh FA (eds) Prog Brain Res 63: 69–85Google Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Alastair M. Buchan
    • 1
  • William A. Pulsinelli
    • 2
  1. 1.The Laboratory of Cerebral IschemiaRobarts Research InstituteLondonCanada
  2. 2.Cerebrovascular Disease Research Center Cornell Medical CollegeNew YorkUSA

Personalised recommendations