Effects of Heparin-Urokinase, Diazepam, or Nimodipine on Brain Damage Induced by Complete Global Brain Ischemia

  • Hidenori Hashimoto
  • Masanori Kondo
  • Yoshimasa Takeda
  • Masaki Sato
  • Shino Oka
  • Takayuki Okamoto
  • Masahiro Ohkawa
  • Yutaka Yaida
  • Yutaka Shimoda
  • Toshiko Ikeda
  • Hidehiko Yatsuzuka
  • Futami Kosaka


The outcome of brain insults induced by ischemia is influenced by two major factors, recirculation disturbance and metabolic derangement. Besides the reactive hyperemia, two types of recirculation disturbance can be distinguished; the no-reflow phenomenon [1] and delayed post-ischemic hypoperfusion [2–5], those have been shown to add a secondary ischemic insult to the tissue. Excessive release of excitatory neurotransmitters (e.g., glutamate, aspartate) during ischemia has been shown to play an important role in metabolic derangement, resulting in selective hyperexcitability after ischemia which leads to postsynaptic ionic influxes (e.g., sodium, calcium), causing neuronal damage [6–8].


Cerebral Blood Flow Mean Arterial Pressure Neurologic Outcome Superior Vena Cava Brain Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ames A III, Wright RL, Kowada M, Thurston JM, Majno G (1968) Cerebral ischemia: II. The no-reflow phenomenon. Am J Pathol 52: 437–453PubMedGoogle Scholar
  2. 2.
    Hossmann KA, Lechtape-Gruter H, Hossmann V (1973) The role of cerebral blood flow for the recovery of the brain after prolonged ischemia. J Neurol 204: 281–299CrossRefGoogle Scholar
  3. 3.
    Nemoto EM, Snyder JV, Carroll RG, Morita H (1975) Global ischemia in dogs: Cerebrovascular CO2 reactivity and autoregulation. Stroke 6: 425–431PubMedCrossRefGoogle Scholar
  4. 4.
    Siesjö BK (1978) Brain energy metabolism. Wiley, New YorkGoogle Scholar
  5. 5.
    Miller CL, Lampard DG, Alexander K, Brown WA (1980) Local cerebral blood flow following transient cerebral ischemia: I. Onset of impaired reperfusion within the first hour following global ischemia. Stroke 11: 534–541PubMedCrossRefGoogle Scholar
  6. 6.
    Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239: 57–69PubMedCrossRefGoogle Scholar
  7. 7.
    Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11: 491–498PubMedCrossRefGoogle Scholar
  8. 8.
    Suzuki R, Yamaguchi T, Li CL, Klatzo I (1983) The effects of 5 minute ischemia in Mongolian gerbils: II. Changes of spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus. Acta Neuropathol (Berl) 60: 217–222.CrossRefGoogle Scholar
  9. 9.
    Safar P, Stezoski W, Nemoto EM (1976) Amelioration of brain damage after 12 minutes’ cardiac arrest in dogs. Arch Neurol 33: 91–95PubMedCrossRefGoogle Scholar
  10. 10.
    Fischer EG (1973) Impaired perfusion following cerebrovascular stasis. Arch Neurol 29: 361–36PubMedCrossRefGoogle Scholar
  11. 11.
    Hossman KA, Hossman V (1977) Coagulopathy following experimental cerebral ischemia. Stroke 8: 249–254CrossRefGoogle Scholar
  12. 12.
    Cantu RC, Ames A III, DiGiacinto G, Dixon J (1969) Hypotension: A major factor limiting recovery from cerebral ischemia. J Surg Res 9: 525–529CrossRefGoogle Scholar
  13. 13.
    Arsenio-Nunes ML, Hossmann KA, Farkas-Bargeton E (1973) Ultrastructural and histochemical investigation of the cerebral cortex of cat during and after complete ischaemia. Acta Neuropathol (Berl) 26: 329–344CrossRefGoogle Scholar
  14. 14.
    Zimmermann V, Hossmann V, Hossmann K-A (1975) Intracranial pressure after prolonged cerebral ischemia. In: Lundberg N, Ponten U, Brock M (eds) Intracranial pressure II. Springer, Berlin, Heidelberg, New York, pp 177–182Google Scholar
  15. 15.
    Dietrich WD, Busto R, Ginsberg MD (1984) Cerebral endothelial microvilli: Formation following global forebrain ischemia. J Neuropathol Exp Neurol 43: 72–83PubMedCrossRefGoogle Scholar
  16. 16.
    Hoffmeister F, Kazda S, Krause HP (1979) Influence of nimodipine (BAY e 9736) on the post-ischemic changes of brain function. Acta Neurol Scand 60 (Suppl 72): 358–359Google Scholar
  17. 17.
    Steen PA, Newberg LA, Milde JM, Michenfelder JD (1983) Nimodipine improves cerebral blood flow and neurologic recovery after complete cerebral ischemia in the dog. J Cereb Blood Flow Metab 3: 38–43PubMedCrossRefGoogle Scholar
  18. 18.
    Kazda S, Garthoff B, Krause HP, Schlosmann K (1982) Cerebrovascular effects of the calcium antagonistic dihydropyridine derivative nimodipine in animal experiments. Arzneimittelforschung 32: 331–338PubMedGoogle Scholar
  19. 19.
    Steen PA, Newberg LA, Milde JH, Michenfelder JD (1984) Cerebral blood flow and neurologic outcome when nimodipine is given after complete cerebral ischemia in the dog. J Cereb Blood Flow Metab 4: 82–87PubMedCrossRefGoogle Scholar
  20. 20.
    Milde LN, Milde JH, Michenfelder JD (1986) Delayed treatment with nimodipine improves cerebral blood flow after complete cerebral ischemia in the dog. J Cereb Blood Flow Metab 6: 332–337PubMedCrossRefGoogle Scholar
  21. 21.
    Steen PA, Gisvold SE, Milde JH, Newberg LA, Scheithauer BW, Lanier WL, Michenfelder JD (1985) Nimodipine improves outcome when given after complete cerebral ischemia in primates. Anesthesiology 62: 406–414PubMedCrossRefGoogle Scholar
  22. 22.
    Vibulsresth S, Dietrich WD, Busto R, Ginsberg MD (1987) Failure of nimodipine to prevent ischemic neuronal damage in rats. Stroke 18: 210–216PubMedCrossRefGoogle Scholar
  23. 23.
    Braestrup C, Squires RF (1978) Pharmacological characterization of benzodiazepine receptors in the brain. Eur J Pharmacol 78: 263–270CrossRefGoogle Scholar
  24. 24.
    Young WS III, Niehoff D, Kuhar MJ, Lippa AS (1981) Multiple benzodiazepine receptor localization by light microscopic radiohistochemistry. J Pharmacol Exp Ther 216: 425–430PubMedGoogle Scholar
  25. 25.
    Bowery NG, Price GW, Hudson AL, Hill DR, Wilkin GP, Turnbull MJ (1984) GABA receptor multiplicity, visualization of different receptor types in the mammalian CNS. Neuropharmacol 23: 219–231CrossRefGoogle Scholar
  26. 26.
    Francis A, Pulsinelli W (1982) The response of GABAergic and cholinergic neurons to transient cerebral ischemia. Brain Res 243: 271–278PubMedCrossRefGoogle Scholar
  27. 27.
    Kuriyama K, Kurihara E, Ito Y, Yoneda Y (1980) Increase in striatal [3H1 muscimol binding following intrastriatal injection of kainic acid: A denervation supersensitivity phenomenon. J Neurochem 35: 343–348PubMedCrossRefGoogle Scholar
  28. 28.
    Hallmayer J, Hossmann KA, Mies G (1985) Low dose of barbiturates for prevention of hippocampal lesions after brief ischemic episodes. Acta Neuropath (Berl) 68: 27–31CrossRefGoogle Scholar
  29. 29.
    Kirino T, Tamura A, Sano K (1986) A reversible type of neuronal injury following ischemia in the gerbil hippocampus. Stroke 17: 455–459PubMedCrossRefGoogle Scholar
  30. 30.
    Wong EHF, Kemp JA, Priestley T, Knight AR, Woodruff GN, Iversen LL (1986) The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc Natl Acad Sci USA 83: 7104–7108PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Hidenori Hashimoto
  • Masanori Kondo
  • Yoshimasa Takeda
  • Masaki Sato
  • Shino Oka
  • Takayuki Okamoto
  • Masahiro Ohkawa
  • Yutaka Yaida
  • Yutaka Shimoda
  • Toshiko Ikeda
  • Hidehiko Yatsuzuka
  • Futami Kosaka
    • 1
  1. 1.Department of Anesthesiology and ResuscitologyOkayama University Medical SchoolOkayama, 700Japan

Personalised recommendations