Skip to main content

The Effects of Sodium Bicarbonate on Cerebrospinal Fluid Acid-Base Disturbances in Total Cerebral Ischemia

  • Chapter

Abstract

If normal circulation or ventilation is stopped, a living body progressively falls into hypoxemia; continuation of this condition will worsen tissue and organ damage. In order to ameliorate this condition, cardiopulmonary cerebral resuscitation (CPCR) is usually performed. In CPCR, cerebral resuscitation is critical because of the difficulty in accomplishing it and because, if it does not succeed, the human being ceases to exist as a human being.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siesjö BK, Kjällzuist A, Zwetnow N (1968) The CSF lactate/pyruvate ratio in cerebral hypoxia. Life Sci 7: 45–52

    Article  PubMed  Google Scholar 

  2. Metzel E, Zimmermann WE (1971) Changes of oxygen pressure, acid-base balance, metabolites and electrolytes in cerebrospinal fluid and blood after cerebral injury. Acta Neurochi (wien) 25: 177–188

    Article  CAS  Google Scholar 

  3. Tabuse H, Fukuda A (1981) Cerebral pathophysiological changes after cardiopulmonary resuscitation (in Japanese). Jpn J Acute Med 5: 317–323

    Google Scholar 

  4. Kohama A, Nakamura Y, Nakamura M, Yano M, Shibatani K (1984) Continuous monitoring of arterial and tissue PCO2 Crit Care Med 12: 940–942

    Article  PubMed  CAS  Google Scholar 

  5. Mitchell RA, Herbert DA, Carman CT (1965) Acid-base constants and temperature coefficients for cerebrospinal fluid. J Appl Physiol 20: 27–30

    PubMed  CAS  Google Scholar 

  6. Bering EA, Sato O (1963) Hydrocephalus: Changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20: 1050–1055

    Article  PubMed  Google Scholar 

  7. Valenca LM, Shannon DC, Kazemi H (1971) Clearance of lactate from the cerebrospinal fluid. Neurology 21: 615–620

    PubMed  CAS  Google Scholar 

  8. Kazemi H, Johnson DC (1986) Regulation of cerebrospinal fluid acid-base balance. Physiol Rev 66: 953–1037

    PubMed  CAS  Google Scholar 

  9. Mima T, Takakura K (1987) Cerebrospinal fluid circulation and electrolytes transport (in Japanese). Jpn J Clin Med 45: 263–272

    Google Scholar 

  10. Posner JB, Plum F (1967) Independence of blood and cerebrospinal fluid lactate. Arch Neurol 16: 492–496

    Article  PubMed  CAS  Google Scholar 

  11. Jaraheri S, Clendening A, Papadakis N, Brody JS (1984) pH Changes on the surface of brain and in cisternel fluid in dogs in cardiac arrest. Stroke 15: 553–557

    Google Scholar 

  12. Posner JB, Swanson AG, Plum F (1965) Acid-base balance in cerebrospinal fluid. Arch Neurol 12: 479–496

    Article  PubMed  CAS  Google Scholar 

  13. Posner JB, Plum F (1967) Spinal fluid pH and neurologic symptoms in systemic acidosis. N Engl J Med 277: 605–613

    Article  PubMed  CAS  Google Scholar 

  14. Ohman JL, Kozak GP (1971) The cerebrospinal fluid in diabetic ketoacidosis. New Engl J Med 284: 283–290

    Article  PubMed  Google Scholar 

  15. Siesjö BK (1984) Administration of base via the CSF route: A clinically useful treatment of cerebral acidosis? Intensive Crit Care Digest 3: 5–9

    Google Scholar 

  16. Stewart JSS (1964) Management of cardiac arrest, with special reference to metabolic acidosis. Br Med J 1: 476–479

    Article  PubMed  CAS  Google Scholar 

  17. Minuck M, Sharma GP (1977) Comparison of THAM and sodium bicarbonate in resuscitation of the heart after ventricular fibrillation in dogs. Anesth Analg 56: 38–45

    Article  PubMed  CAS  Google Scholar 

  18. Graff HW, Leach W, Arieff Al (1985) Evidence for a detrimental effect of bicarbonate therapy in hypoxic lactic acidosis. Science 227: 754–757

    Article  Google Scholar 

  19. Berenyi KJ, Wolk M, Killip T (1975) Cerebrospinal fluid acidosis complicating therapy of experimental cardiopulmonary arrest. Circulation 52: 319–324

    PubMed  CAS  Google Scholar 

  20. Bishop RL, Weisfeldt ML (1976) Sodium bicarbonate administration during cardiac arrest, effect on arterial pH, PCO2 and osmolality. JAMA 235: 506–509

    Article  PubMed  CAS  Google Scholar 

  21. Niemann JT, Rosborough JP (1984) Effects of acidemia and sodium bicarbonate therapy in advanced cardiac life support. Ann Emerg Med 13: 781–784

    Article  PubMed  CAS  Google Scholar 

  22. Lawson NW, Butler GH III, Roy CT (1973) Alkalosis and cardiac arrythmia. Anesth Analg 52: 951–965

    Article  PubMed  CAS  Google Scholar 

  23. Bellingham AJ, Detter JC, Lenfant C (1971) Regulatory mechanisms of hemoglobin-oxygen affinity in acidosis and alkalosis. J Clin Invest 50: 700–706

    Article  PubMed  CAS  Google Scholar 

  24. Relman AS (1972) Metabolic consequences of acid-base disorders. Kidney Int 1: 347–358

    Article  PubMed  CAS  Google Scholar 

  25. Weil MH, Rackow EC, Trevino R, Grundler W, Falk JL, Griffel Ml (1986) Difference in acid-base state between venous and arterial blood during cardio-pulmonary resuscitation. N Engl J Med 315: 153–156

    Article  PubMed  CAS  Google Scholar 

  26. Sessler D, Mills P, Gregory G, Litt L, James T (1987) Effects of bicarbonate on arterial and brain intracellular pH in neonatal rabbits recovering from hypoxic lactic acidosis. J Pediatr 111: 817–823

    Article  PubMed  CAS  Google Scholar 

  27. Wiklund LW, Soderberg D, Henneberg S, Rubertsson S, Stjernström H, Groth T (1986) Kinetics of carbon dioxide during cardiopulmonary resuscitation. Crit Care Med 8: 1015–1022

    Article  Google Scholar 

  28. Filley GF, Kindig NB (1984) Carbicarb, an alkalinizing ion-generating agent of possible clinical usefulness. Trans Am Clin Climatol Assoc 96: 141

    Google Scholar 

  29. Bersin RM, Arieff AL (1988) Improved hemodynamic function during hypoxia with Carbicarb, a new agent for the management of acidosis. Circulation 77: 227–233

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Kohama, A., Takasu, N., Ishimatsu, S., Maenosono, A., Suzuki, K. (1991). The Effects of Sodium Bicarbonate on Cerebrospinal Fluid Acid-Base Disturbances in Total Cerebral Ischemia. In: Takeshita, H., Siesjö, B.K., Miller, J.D. (eds) Advances in Brain Resuscitation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68538-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68538-8_11

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68540-1

  • Online ISBN: 978-4-431-68538-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics