Effects of Ni Substitution on the Superconducting and Raman Spectra in YBa2Cu4O8

  • N. Watanabe
  • N. Koshizuka
  • N. Seiji
  • H. Yamauchi
Conference paper


The effects of Ni-substitution on YBa2Cu4O8 have been investigated by Raman scattering, X-ray diffraction, resistivity and susceptibility measurements. Samples of YBa2(Cu 1−xNi x )4O8 with x = 0 to 0.1 were prepared using a highoxygen-pressure technique. As the Ni content is increased, the lattice parameter of the a axis increases, but that of the c axis decreases. The structure of the YBa2(Cu 1−xNi x )4O8 samples remain orthorhombic up to the highest doping concentration. The superconducting transition temperature T c decreases monotonically with increasing Ni concentration for x<0.03, with a coefficient of -32 K/at.%. It is found that the linewidth of Cu(2) A g mode at 150 cm−1 increases, while the frequency of the axial stretching vibration of 0(4) at 500 cm−1 remains constant for increasing Ni concentration. These facts suggest that Ni atoms will preferentially occupy the Cu(2) sites. The depression of T c is also discussed based on this substitution model.


Superconducting Transition Temperature Antiferromagnetic Correlation Chain Site Cu02 Plane Anti Ferromagnetic Spin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Maeno, T. Tornita, M. Kyogoku, S. Awaji, Y. Aoki, K. Hoshino, A. Minami, and T. Fujita, Nature (London). 328, (1987)512.CrossRefGoogle Scholar
  2. 2.
    E. Takayama-Muromachi, Y. Uchida, and K. Kato, Jpn. J. Appl. Phys. 26, (1987)L2087.Google Scholar
  3. 3.
    G. Xiao, M. Z. Cieplak, A. Garvin, F. H. Stretz, A. Bakhshai, and C. L. Cien, Phys. Rev. Lett. 60, (1988) 1446.CrossRefGoogle Scholar
  4. 4.
    G. Xiao, M. Z. Cieplak, D. Musser, A. Garvin, F. H. Streitz, C. L. Cien, J. J. Rhyne, and J. A. Gotaas, Nature (London) 332, (1988)238.CrossRefGoogle Scholar
  5. 5.
    R. Liang, T. Nakamura, H. Kawaji, M. Itoh, and T. Nakamura, Physica C 170, (1990)307.CrossRefGoogle Scholar
  6. 6.
    C. S. Jee, D. Nichols, A. Kebede, S. Rahman, J. E. Crow, A. M. Ponte Goncalves, T. Mihalisin, G. H. Myer, I. Perez, R. E. Salomon, P. Schlottmann, S. H. Bloom, M. V. Kuric, Y. S. Yao, and R. P. Guertin, J. Supercond. 1, (1988)63.Google Scholar
  7. 7.
    K. Westerholt, H. J. Wüller, H. Bach, and P. Stauche, Phys. Rev. B 39, (1989)11680CrossRefGoogle Scholar
  8. 8.
    J. M. Tarascon, L. H. Greene, P. Barboux, W. R. McKinnon, G. W. Hull, T. P. Orland, K. A. Delin, S. Foner, and E. J. McNiff, Jr., Phys. Rev. B 36, (1987)8393.Google Scholar
  9. 9.
    J. M. Tarascon, P. Barboux, P. F. Miceli, L. H. Greene, G. W. Hull, M. Eibschutz, and S. A. Sunshine, Phys. Rev. B 37, (1988)7458.CrossRefGoogle Scholar
  10. 10.
    Y. Xu, R. L. Sabatini, A. R. Moodenbaugh, Y. Zhu, S. -G. Shyu, M. Suenaga, K. W. Dennis, and R. W. McCallum, Physica C 169, (1990)205.Google Scholar
  11. 11.
    P. F. Miceli, J. M. Tarascon, L. H. Greene, P. Barboux, F. J. Rotella, and J. D. Jorgensen, Phys. Rev. B 37, (1988)5932.Google Scholar
  12. 12.
    I. Feiner and B. Brosh, Phys. Rev. B 43, (1991)10364.CrossRefGoogle Scholar
  13. 13.
    T. Miyatake, K. Yamaguchi, T. Takata, N. Koshizuka, and S. Tanaka, Phys. Rev. B 44, (1991)10139.Google Scholar
  14. 14.
    R. Lal, S. P. Pandey, A. V. Narlikar, and E. Gmelin, Phys. Rev. B 49, (1994)6382.CrossRefGoogle Scholar
  15. 15.
    K. Yanagisawa, Y. Matsui, Y. Kodama, Y. Yamada, and T. Matsumoto, Physica C 191, (1992)32.CrossRefGoogle Scholar
  16. 16.
    Y. Kodama, S. Tanemura, Y. Yamada, and T. Matsumoto, Physica C 199, (1992)1.CrossRefGoogle Scholar
  17. 17.
    Y. Morioka, A. Tokiwa, M. Kikuchi, and Y. Syono, Solid State Commun. 67, (1988)267.Google Scholar
  18. 18.
    M. Hangyo, S. Nakashima, M. Nishiuchi, K. Nii, and A. Mitsuishi, Solid State Commun. 67, (1988) 1171.Google Scholar
  19. 19.
    L. C. Sengupta, B. Roughani, J. Aubel, S. Sundaram, and W. C. H. Joiner, Physica C 165, (1990)125.CrossRefGoogle Scholar
  20. 20.
    E. Liarokapis, L. T. Wille, Th. Leventouri, L. Martinez, H. Lu, V. Hadjiev, and M. Iliev, Physica C 170, (1990)419Google Scholar
  21. 21.
    B. Roughani, L. C. Sengupta, J. L. Aubel, S. Sundaram, and W. C. H. Joiner, Physica C 171, (1990)77.Google Scholar
  22. 22.
    A. Erle and G. Güntherodt, Physica C 171, (1990)216.CrossRefGoogle Scholar
  23. 23.
    M. Iliev, Y. Atanassova, L. Bozukov, J. Tihov, V. G. Hadjiev, and E. Liarokapis, Physica C 191, (1992)419.Google Scholar
  24. 24.
    K.-M. Ham, J.-T. Kim, R. Sooryakumar, and T. R. Lemberger, Phys. Rev. B 47, (1993)11439.Google Scholar
  25. 25.
    M. Kakihana, L. Börjesson, S. Eriksson, P. Svedlindh, and P. Norling, Phys. Rev. B 40, (1989)6787.CrossRefGoogle Scholar
  26. 26.
    Y. Kodama, Y. Yamada, N. Murayama, M. Awano, and T. Matsumoto, in: Adv. superconductivity III, K. Kajimura and H. Hayakawa (Springer, Tokyo, 1991)p.399.Google Scholar
  27. 27.
    E. T. Heyen, R. Liu, C. Thomsen, R. Kremer, M. Cardona, J. Karpinski, E. Kaldis, and S. Rusiecki, Phys. Rev. B 41, (1990)11058.CrossRefGoogle Scholar
  28. 28.
    R. Zeyher and G. Zwicknagl, Z. Phys. B 78, 175 (1990).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1995

Authors and Affiliations

  • N. Watanabe
    • 1
  • N. Koshizuka
    • 1
  • N. Seiji
    • 1
  • H. Yamauchi
    • 1
  1. 1.Superconductivity Research LaboratoryInternational Superconductivity Technology CenterKoto-ku, Tokyo 135Japan

Personalised recommendations