Advertisement

Hall’s transform and the Segal-Bargmann map

  • Leonard Gross
  • Paul Malliavin

Summary

It is shown how Hall’s transform for a compact Lie group can be derived from the infinite dimensional Segal-Bargmann transform by means of stochastic analysis.

Keywords

Hilbert Space Holomorphic Function Heat Kernel Real Hilbert Space Complex Hilbert Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AHK]
    Albeverio, S. and Hoegh-Krohn, R., The energy representation of Sobolev Lie groups, Compositio Math. 36 (1978), 37–52.MathSciNetMATHGoogle Scholar
  2. [AM]
    Airault, H. and Malliavin, P., Integration geometrique sur l’espace de Wiener, Bull. Sc. Mathematique 112 (1988), 3–52.MathSciNetMATHGoogle Scholar
  3. [BSZ]
    Baez, John C., Segal, Irving E., Zhou, Zhengfang, “Introduction to Algebraic and Constructive Quantum Field Theory”, Princeton University Press, Princeton, New Jersey, 1992.Google Scholar
  4. [Bl]
    Bargmann, V., On a Hilbert space of analytic functions and an associated integral transform, Part I, Communications of Pure and Applied Mathematics 24 (1961), 187–214.MathSciNetCrossRefGoogle Scholar
  5. [B2]
    Bargmann, V., Remarks on a Hilbert space of analytic functions, Proc. of the National Academy of Sciences 48 (1962), 199–204.MathSciNetMATHCrossRefGoogle Scholar
  6. [B3]
    Bargmann, V., Acknowledgement, Proc. of the National Academy of Sciences 48 (1962), 2204.MathSciNetCrossRefGoogle Scholar
  7. [Ca]
    Cameron, R. H., Some examples of Fourier-Wiener transforms of analytic functionals, Duke Math.J. 12 (1945), 485–488.MathSciNetMATHCrossRefGoogle Scholar
  8. [CM1]
    Cameron, R. H. and Martin, W. T., Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 489–507.MathSciNetMATHGoogle Scholar
  9. [CM2]
    Cameron, R. H. and Martin, W. T., Fourier-Wiener transforms of functionals belonging to L2 over the space C, Duke Math. J. 14 (1947), 99–107.MathSciNetMATHGoogle Scholar
  10. [Car]
    Carlen, Eric A., Some integral identities and inequalities for entire functions and their applications to the coherent state transform, J. of Funct. Anal. 97 (1991), 231–249.MathSciNetMATHCrossRefGoogle Scholar
  11. [Co]
    Cook, J., The mathematics of second quantization, Trans. Amer. Math. Soc. 74 (1953), 222–245.MathSciNetMATHCrossRefGoogle Scholar
  12. [Co]
    Driver, B. K., On the Kakutani-Itô-Segal-Gross and the Segal-Bargmann-Hallisomorphisms, J. of Funct. Anal. 133 (1995), 69–128.MathSciNetMATHCrossRefGoogle Scholar
  13. [Co]
    Driver, B. K., On the Kakutani-Itô-Segal-Gross and the Segal-Bargmann-Hallisomorphisms, J. of Funct. Anal. 133 (1995), 69–128.MathSciNetMATHCrossRefGoogle Scholar
  14. [Da]
    Davies, E.B., “Heat kernels and spectral theory”, Cambridge Univ. Press, New York, PortChester, Melbourne, Sydney, 1990.Google Scholar
  15. [DG]
    Driver, B. K. and Gross, L., Hilbert spaces of holomorphic functions on complex Lie groups,(to appear in Proceedings of the 1994 Taniguchi Symposium).Google Scholar
  16. [Dyn]
    Dynkin, E. B., Markov processes and random fields„ Bull. Amer. Math. Soc. 3 (1979), 975–999, [See Appendix].Google Scholar
  17. [FR]
    Fang, Shizan et Ren, Jiagang, Sur le squelette et les dèrivèes de Malliavin des fonctions holomorphes sur un espace de Wiener complexe, J. of Math. Kyoto Univ. 33 3 (1993), 749–764.Google Scholar
  18. [Fockl]
    Fock, V., Verallgemeinerung und Lösung der Diracschen statistischen Gleichung, Zeits. f. Phys. 49, 339–357.CrossRefGoogle Scholar
  19. [Fock2]
    Fock, V., Zur Quantenelektrodynamik, Physikalische Zeitschrift der Sowjetunion 6, 425–469.Google Scholar
  20. [Fol]
    Folland, Gerald B., Harmonic Analysis in Phase Space, Ann. of Math. Studies, Princeton University Press, Princeton, NJ (1989).MATHGoogle Scholar
  21. [G1]
    Gross, L., Potential theory on Hilbert space, J. Funct. Anal. 1 (1967), 123–181.MATHCrossRefGoogle Scholar
  22. [G2]
    Gross, L., Logarithmic Sobolev inequalities on Lie groups, Illinois J. of Math. 36 (1992), 447–490.MATHGoogle Scholar
  23. [G3]
    Gross, L., L.garithmic Sobolev inequalities on loop groups, J. of Funct. Anal. 102 (1992), 268–313.CrossRefGoogle Scholar
  24. [G4]
    Gross, L., Uniqueness of ground states for Schrödinger operators over loop groups, J. of Funct. Anal. 112 (1993), 373–441.MATHCrossRefGoogle Scholar
  25. [G5]
    Gross, L., Uniqueness of ground states for Schrödinger operators over loop groups, J. of Funct. Anal. 112 (1993), 373–441.MATHCrossRefGoogle Scholar
  26. [G6]
    Gross, L., Harmonic analysis for the heat kernel measure on compact homogeneous spaces, in “Stochastic Analysis on Infinite Dimensional Spaces” (Kunita and Kuo, eds.), Longman House, Essex, England, 1994, pp. 99–110.Google Scholar
  27. [GJ]
    Glimm, James and Jaffe, Arthur, “Quantum physics: a functional integral point of view”, Springer-Verlag, New York, 1987.Google Scholar
  28. [Hal]
    Hall, B., The Segal-Bargmann “coherent state” transform for compact Lie groups, J. of Funct. Anal. 122 (1994), 103–151.MATHCrossRefGoogle Scholar
  29. [Ha2]
    Hall, B., The inverse Segal-Bargmann transform for compact Lie groups (to appear J. of Funct. Anal.).Google Scholar
  30. [He]
    Hermite, C., Sur un nouveau développement en série des fonctions,See Ouvres de Charles Hermite, Tome II, p.293–308, Gauthier-Villars, Paris, 1908, originally in C. R. Acad. des Sci., t.LVIII (1864), 93 and 266.Google Scholar
  31. [HKPS]
    Hida, T., Kuo, H.-H., Potthoff, J., Streit, L., White Noise, an infinite dimensional calculus, Kluwer Acad. Pub., Dordrecht/Boston, 1993.Google Scholar
  32. [Hijl]
    Hijab, Omar, Hermite functions on compact Lie groups I, J. of Funct. Anal. 125 (1994), 480–492.MathSciNetMATHCrossRefGoogle Scholar
  33. [Hij2]
    Hijab, Omar, Hermite functions on compact Lie groups II, J. of Funct. Anal. 133 (1995), 41–49.MathSciNetMATHCrossRefGoogle Scholar
  34. [HP]
    Hille, E. and Phillips, R. S., Functional analysis and semi-groups, AMS Colloquium Publications 31 (1957), 109–116.MathSciNetGoogle Scholar
  35. [Hitl]
    Hitsuda, Masayuki, Formula for Brownian partial derivatives„ Second Japan-USSR Symposium on Probability Theory, Kyoto (1972), 111–114.Google Scholar
  36. [Hit2]
    Hitsuda, Masayuki, Formula for Brownian partial derivatives, Publ. Fac. of Inte- grated Arts and Sciences, Hiroshima University, Ser.3, v. 4 (1978), 1–15.Google Scholar
  37. [Itol]
    Ito, K., Multiple Wiener integral, J. Math. Soc. Japan 3 (1951), 157–169.MATHGoogle Scholar
  38. [Ito2]
    Ito, K., Complex multiple Wiener integral, Japan J. Math. 22 (1953), 63–86.Google Scholar
  39. [Ko]
    Kondratiev, Yu. G., Spaces of entire functions of an infinite number of variables, connected with the rigging of Fock space, Selecta Mathematica Sovietica 10 (1991, originally published in 1980 ), 165–180.Google Scholar
  40. KLPS] Kondratiev, Yu. G., Leukert, P., Potthoff, J., Streit, L., Westerkamp, W., Generalized functionals in Gaussian spaces - the characterization theorem revisited (to appear J. of Funct. Anal.).Google Scholar
  41. [Kr1]
    Krée, Paul, Solutions faibles d’equations aux dérivées fonctionelles,Seminar Pierre Lelong I, Lecture Notes in Mathematics, see especially Sec. 3, vol. 410, Springer, New York/Berlin, 1972/1973, pp. 142–180.Google Scholar
  42. [Kr2]
    Krée, Paul, Solutions faibles d’equations aux dérivées fonctionelles,Seminar Pierre Lelong II, Lecture Notes in Mathematics, see especially Sec. 5, vol. 474, Springer, New York/Berlin, 1973/1974, pp. 16–47.Google Scholar
  43. [Kr3]
    Krée, Paul, Calcul d’intégrales et de dérivées en dimension infinie, J. of Funct. Anal. 31 (1979), 150–186.MATHCrossRefGoogle Scholar
  44. [Ku]
    Kubo, I., A direct setting of white noise calculus„ Stochastic Analysis on Infinite Dimensional Spaces (Kunita and Kuo, eds.), Longman House, Essex, England, 1994, pp. 152–166.Google Scholar
  45. [Kuo]
    Kuo, H. H., Gaussian measures in Banach spaces, Lecture Notes in Mathematics, vol. 463, Springer-Verlag, Berlin, New York, 1975.Google Scholar
  46. [KT]
    Kusuoka, S. and Taniguchi, S., Pseudoconvex domains in almost complex abstract Wiener spaces, RIMS-preprint 891 (1992).Google Scholar
  47. [Leel]
    Lee, Yuh-Jia, Analytic version of test functionals, Fourier transform, and a characterization of measures in white noise calculus, J. of Funct. Anal. 100 (1991), 359–380.MATHCrossRefGoogle Scholar
  48. [Lee2]
    Lee, Yuh-Jia, Transformation and Wiener-Itö decomposition of white noise functionals„ Bulletin of the Institute of Mathematics Academia Sinica 21 (1993), 279–291.Google Scholar
  49. [MM]
    Malliavin, M-P. and Malliavin, P., Integration on loop groups. I. Quasi invariant measures, J. of Funct. Anal. 93 (1990), 207–237.MathSciNetMATHCrossRefGoogle Scholar
  50. [Ni]
    Nielsen, T. T., Bose algebras: The complex and real wave representations, Lecture Notes in Mathematics, vol. 1472, Springer-Verlag, Berlin/New York, 1991.Google Scholar
  51. [Ob]
    Obata, N., White Noise Calculus and Fock Space, Lecture Notes in Mathematics, vol. 1577, Springer-Verlag, Berlin/New York, 1994.Google Scholar
  52. [Pan]
    Paneitz, S. M., Pedersen, J., Segal, I. E., and Zhou, Z., Singular operators on Boson fields as forms on spaces of entire functions on Hilbert space, J. of Funct. Anal. 100 (1990), 36–58.MathSciNetCrossRefGoogle Scholar
  53. [Ped]
    Pedersen, J., Segal, I. E., and Zhou, Z., Nonlinear quantum fields in 4 dimensions and cohomology of the infinite Heisenberg group, Trans. Amer. Math. Soc. 345 (1994), 73–95.MathSciNetMATHCrossRefGoogle Scholar
  54. [Pot]
    Potthoff, J. and Streit, L., A characterization of Hida distributions, J. of Funct. Anal. 101 (1991), 212–229.MathSciNetMATHCrossRefGoogle Scholar
  55. [R]
    Robinson, Derek W., “Ellitpic operators and Lie groups”, Clarendon Press, Oxford, New York, Tokyo, 1991.Google Scholar
  56. [Sad]
    Sadasue, Gaku, Equivalence-singularity dichotomy for the Wiener measures on path groups and loop groups„ J. of Math. Kyoto Univ. 35 (to appear).Google Scholar
  57. [Sel]
    Segal, I. E., Tensor algebras over Hilbert spaces, Trans. Amer. Math. Soc. 81 (1956), 106–134.MathSciNetMATHCrossRefGoogle Scholar
  58. [Se2]
    Segal, I. E., Mathematical characterization of the physical vacuum for a linear Bose-Einstein field, Illinois J. Math. 6 (1962), 500–523.MATHGoogle Scholar
  59. [Se3]
    Segal, I. E., Mathematical problems in relativistic quantum mechanics, Proceedings of the AMS Summer Seminar on Applied Mathematics, Boulder, Colorado, Amer. Math. Soc. (1960), Providence, RI.Google Scholar
  60. [Se4]
    Segal, I. E., Construction of non-linear local quantum processes I, Ann. of Math. 92 (1970), 462–481.MathSciNetMATHCrossRefGoogle Scholar
  61. [Se5]
    Segal, I. E., The complex wave representation of the free Boson field, in “Topics in functional analysis: essays dedicated to M. G. Krein on the occasion of his 70th birthday”, Advances in Mathematics: Supplementary Studies (I. Gohberg and M. Kac, eds.), vol. 3, Academic Press, New York, 1978, pp. 321–344.Google Scholar
  62. [Shi1]
    Shigekawa, Ichiro, Transformations of the Brownian motion on the Lie group, in “Stochastic Analysis: Proceedings of the Taniguchi International Symposium on Stochastic Analysis” (K. Itô, ed.), Katata and Kyoto, 1982, Japan, North-Holland, Amsterdam/New York, 1984, pp. 409–422.Google Scholar
  63. [Shi2]
    Shigekawa, Ichiro, Itô-Wiener expansions of holomorphic functions on the complex Wiener space, in “Stochastic Analysis” (E. Mayer, et al, eds.), Academic Press, San Diego, 1991, pp. 459–473.Google Scholar
  64. [Sugl]
    Sugita, Hiroshi, Various topologies in the Wiener space and Lévy’s stochastic area, Probab. Theory Relat. Fields 91 (1992), 283–296.MathSciNetMATHCrossRefGoogle Scholar
  65. [Sug2]
    Sugita, Hiroshi, Properties of holomorphic Wiener functions-skeleton, contraction, and local Taylor expansion, Probab. Theory Relat. Fields 100 (1994), 117–130.MathSciNetMATHCrossRefGoogle Scholar
  66. [Sug3]
    Sugita, Hiroshi, Regular version of holomorphic Wiener function,(to appear J. Math. Kyoto Univ.).Google Scholar
  67. [Tan]
    Taniguchi, Setsuo, On almost complex structures on abstract Wiener spaces, preprint (1994).Google Scholar
  68. [Zh]
    Zhou, Z., The contractivity of the free Hamiltonian semigroup in LP spaces of entire functions, J. of Funct. Anal. 96 (1991), 407–425.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1996

Authors and Affiliations

  • Leonard Gross
    • 1
  • Paul Malliavin
    • 2
  1. 1.Department of MathematicsCornell UniversityIthacaUSA
  2. 2.ParisFrance

Personalised recommendations