Skip to main content

On decomposition of additive functionals of reflecting Brownian motions

  • Chapter
  • 1331 Accesses

Abstract

Let X be a locally compact separable Hausdorff metric space and m be a positive Radon measure on X with full support. For an m-symmetric Hunt process M = (Xt, Px) on X with the associated Dirichlet form ,.F) being regular on L 2 (X; m), the following decomposition of additive functionals (AF’s in abbreviaton) is known ([11]):

$$u({{X}_{t}})-u({{X}_{0}})={{M}_{t}}^{[u]}+{{N}_{t}}^{[u]}$$

P x — almost surely, which holds for quasi every (q.e. in abbreviation) xX Here u is a quasi- continuous function in the space F, Mat [u] is a martingale AF with quadratic variation being associated with the energy measure of u, Nt [u] is a continuous AF of zero energy and `for q.e. xX’ means `for every xX outside a set of zero capacity’. (1.1) is beyond a semimartingale decomposition in that N t [u] is of zero quadratic variation Pm-a.s. but not necessarily of bounded variation Px-a.s. on each finite time interval. Nevertheless both M t [u] and N t [u] are well computable from u through the Dirichlet form ε and accordingly the decomposition (1.1) has proved to be a useful substitute of Ito’s formula for symmetric Markov processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.F.Bass and P.Hsu: The semimartingale structure of reflecting Brownian motion, Proc.A.M.S., 108 (1990), 1007–1010

    Article  MathSciNet  MATH  Google Scholar 

  2. R.F.Bass and P.Hsu: Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains, Ann.Probab., 19 (1991), 486–506

    Article  MathSciNet  MATH  Google Scholar 

  3. E.A.Carlen, S.Kusuoka and D.W.Stroock: Upper bounds for symmetric Markov transition functions, Ann.Inst.H.Poincaré Probab.Statist., 23 (1987), 245–287

    MathSciNet  Google Scholar 

  4. S.Q.Chen: On reflecting diffusion processes and Skorohod decompositions, Probab.Theory Relat.Fields 94 (1993), 281–315

    Article  MATH  Google Scholar 

  5. Z.Q.Chen, P.J.Fitzsimmons and R.J.Williams: Quasimartingales and strong Caccioppoli set, Potential Analysis, 2 (1993), 219–243

    Article  MathSciNet  Google Scholar 

  6. R.D.DeBlassie and E.H.Toby: Reflecting Brownian motion in a cusp, Trans.Am.Math.Soc., 339 (1993), 297–321

    Article  Google Scholar 

  7. R.D.DeBlassie and E.H.Toby: On the semimatingale representation of reflecting Brownian motion in a cusp, Prob.Theory Relat.Fields, 94 (1993), 505–524

    Article  Google Scholar 

  8. M.Fukushima: A construction of reflecting barrier Brownian motions for bounded domains, Osaka J.Math., 4 (1967), 183–215

    MathSciNet  MATH  Google Scholar 

  9. M.Fukushima: On a strict decomposition of additive functionals for symmetric diffusion processes, Proc.Japan Acad.,70 Ser. A(1994),277–281

    Google Scholar 

  10. M.Fukushima: On a decomposition of additive functionals in the strict sense for a symmetric Markov process, in “Dirichlet Forms and Stochastic Processes’,eds. Z.Ma, M.Röckner, J.Yan, pp155–169,Walter de Gruyter 1995

    Google Scholar 

  11. M.Fukushima,Y.Oshima and M.Takeda: Dirichlet forms and symmetric Markov processes, Walter de Gruyter, Berlin-New York 1994

    Book  MATH  Google Scholar 

  12. M.Fukushima and M.Tomisaki:Reflecting diffusions on Lipschitz domains with cusps-Analytic construction and Skorohod representation, Potential Analysis 4 (1995),377–408

    Article  MathSciNet  MATH  Google Scholar 

  13. M.Fukushima and M.Tomisaki: Construction and decomposition of reflecting diffusions on Lipschitz domains with Hölder cusps, Probab. Theory Relat. Fields, to appear

    Google Scholar 

  14. V.G.Maz’ja: Sobolev spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1985

    MATH  Google Scholar 

  15. E.Pardoux and R.J.Williams: Symmetric reflected diffusions, Ann.Inst.Henri Poincaré 30 (1994), 13–62

    MathSciNet  MATH  Google Scholar 

  16. H.Tanaka: Stochastic differential equations with reflecting boundary condition in convex regions, Hiroshima Math.J., 9 (1979), 163–177

    MathSciNet  MATH  Google Scholar 

  17. S.R.S.Varadhan and R.J.Williams: Brownian motion in a wedge with oblique reflection, Comin.Pure.Appl.Math., 38 (1985), 405–443

    Article  MATH  Google Scholar 

  18. R.J.Williams and W.A.Zheng: On reflecting Brownian motion-a waek convergence approach, Ann.Inst.Henri Poincaré 26 (3) (1990), 461–488

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Fukushima, M., Tomisaki, M. (1996). On decomposition of additive functionals of reflecting Brownian motions. In: Ikeda, N., Watanabe, S., Fukushima, M., Kunita, H. (eds) Itô’s Stochastic Calculus and Probability Theory. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68532-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68532-6_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68534-0

  • Online ISBN: 978-4-431-68532-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics