Principal values of Brownian local times and their related topics

  • Toshio Yamada


The study of the Cauchy’s principal value of Brownian local times has started with Ito,K. and McKean,H.P.Jr. [19]. In this article, we would like to see how their idea combined with a generalization of the Ito formula in stochastic calculus has grown up to be an interesting branch in the study of Brownian motion. After Ito-McKean, Ezawa,H.,Klauder,J.R. and Shepp,A. ([10]) discussed principal values of local times in an investigation of vestigical effects of the singular potential λV(x) = λ|xc| α where λ → 0 in the Feynmann-Kac integral. It seems remarkable that in the early 70’s, when few payed attention to these notions, they have been already used for some physical purposes by physicists cooperating with a mathematician. From the end of the 70’s to the beginning of the 80’s two studies have been published, one by Fukushima,M. [14] and the other by Föllmer,H. [13], and they have played the role of the corner stone in the development of a new branch in stochastic analysis. Föllmer has proposed stochastic analysis of Dirichlet process which is a generalization of semi-martingale. The class of additive functionals of zero energy has been investigated by Fukushima in the scheme of symmetric Hunt processes. These additive functionals can not be treated in the frame of the theory of semi-martingales. The studies have been essentially concerned with generalizations of the Ito-formula. Owing to their propositions, we have rich possibilities to apply the Ito calculus to wider class of processes than that of semi-martingales.


Brownian Motion Local Time Fractional Derivative Dirichlet Process Additive Functional 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bass, R., Joint continuity and representations of additive functionals of d-dimensional Brownian motion, Stoch. Proc. Appl. 17 (1984), 211–227.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bertoin, J., Sur une intégrale pour les processus à a-variation bornée, Ann.Prob. 17, 4 (1989), 1521–1535.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bertoin, J., Applications de la théorie spectrale des cordes vivrantes aux fonctionelles additives pricipales d’un brownien réfl’echi, Ann. Inst.Henri Poincaré 25, 3 (1989), 307–323.MathSciNetGoogle Scholar
  4. 4.
    Bertoin, J., Applications des processus de Dirichlet aux temps locaux et temps locaux d’intersection d’un mouvement brownien, Prob. Th. Rel. F. 80 (1989), 433–460.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bertoin, J., Excursion of a BES0(d) and its drift term (0 <d< 1), Prob. Th. Rel. F. 84 (1990), 231–250.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bertoin, J., Complements on Hilbert transform and the fractional derivative of Brownian local times,.1. Math. Kyoto Univ. 30, 4 (1990), 651–670.MathSciNetGoogle Scholar
  7. 7.
    Bertoin, J., How does a reflected one-dimensional diffusion bounce back ?, Forum Math. 4 (1992), 549–565.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Biane, Ph. and Yor, M., Valeurs principales associés aux temps locaux brownien, Bull. Sci. Math. 111 (1987), 23–101.MathSciNetMATHGoogle Scholar
  9. 9.
    Dellacherie, C. and Meyer, P.A., Probabilités et potentiel vol.2, vol.5,Hermann, Paris, 1980–1992.Google Scholar
  10. 10.
    Ezawa, H.,Klauder, J.R. and Shepp, A., Vestigial effects of singular potentials in diffusion theory and quantum mechanics, J. Math. Phys. 16, 4 (1975), 783–799.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fitzsimmons, P.J. and Getoor, R.K., On the distribution of the Hilbert transform of the local time of a symmetric Lévy process, Ann.Prob. 20, 3 (1992), 1484–1497.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fitzsimmons, P.J. and Getoor, R.K., Limit theorems and variation properties for fractional derivatives of local time of a stable process, Ann. Inst. Henri Poincaré 28, 2 (1992), 311–333.MathSciNetGoogle Scholar
  13. 13.
    Föllmer, H., Calcul d’Ito sans probabilités, S’eminaire de Prob., Lect.Note Math. 850, 15 (1981), 143–150.Google Scholar
  14. 14.
    Fukushima, M., A decomposition of additive functionals of finite energy, Nagoya Math. J. 74 (1979).Google Scholar
  15. 15.
    Fukushima, M.,Oshima, Y. and Takeda, M., Dirichlet forms and symmetric Markov processes, Walter de Gruyter, Berlin New York, 1994.Google Scholar
  16. 16.
    Gelfand, I.M.,Graev, M.I. and Vilenkin, N.I., Generalized functions vol. 5, Academic Press, New York London, 1966.Google Scholar
  17. 17.
    Helgason, S., The Radon transform, Birkhäuser, Boston, 1980.MATHGoogle Scholar
  18. 18.
    Ikeda, N. and Watanabe, S., Stochastic differential equations and diffusion processes, Second edition, North Holland/Kodansha, Amsterdam Oxford NewYork Tokyo, 1989.MATHGoogle Scholar
  19. 19.
    Ito, K. and McKean, H.P.Jr., Diffusion processes and their sample paths, Springer Verlag, Berlin Heidelberg New York, 1965.MATHGoogle Scholar
  20. 20.
    McKean, H.P.Jr. and Tanaka, H., Additive functionals of Brownian motion path, Mem. Coll. Sci. Univ. Kyoto 33 (1961), 479–506.MathSciNetMATHGoogle Scholar
  21. 21.
    Nakao, S., Stochastic calculus for continuous additive functionals locally of zero energy, Z. Wahr. 68 (1985), 557–578.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Oshima, Y. and Yamada, T., On some representations of continuous additive functionals locally of zero energy, J. Math. Soc. Japan 36, 2 (1984), 315–339.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pitman, J.W. and Yor, M., Further asymptotic laws of planer Brownien motion, Ann. Prob. 17, 3 (1989), 965–1011.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Revuz, D. and Yor, M., Continuous martingales and Brownian motion, Second edition, Springer Verlag, Berlin Heidelberg New York london Tokyo Hong Kong Barcelona Budapest, 1994.MATHGoogle Scholar
  25. 25.
    Tanaka, H., Note on continuous additive functionals of 1-dimensional Brownian path, Z. Wahr. 1 (1963), 251–257.MATHCrossRefGoogle Scholar
  26. 26.
    Yamada, T., On some representations concerning the stochastic integrals, Prob. Math. Stat. 4, 2 (1984), 153–166.Google Scholar
  27. 27.
    Yamada, T., On the fractional derivative of Brownian local times, J. Math. Kyoto Univ. 25, 1 (1985), 49–58.Google Scholar
  28. 28.
    Yamada, T., On some limit theorems for occupation times of one dimensional Brownian motion and its continuous additive functionals locally of zero energy, J. Math. Kyoto Univ. 26, 2 (1986), 309–322.Google Scholar
  29. 29.
    Yamada, T., Representations of continuous additive functionals of zero energy via convolution type transforms of Brownian local times and the Radon transform, Stochastics and Stoch. Rep. 46, 1 (1994), 1–15.CrossRefGoogle Scholar
  30. 30.
    Yor, M., Un exemple de processus qui n’est pas une semi-martingale, Astérisque 52–53 (1978), 219–221.Google Scholar
  31. 31.
    Yor, M., Sur la transformée de Hilbert des temps locaux browniens et une extension de la formule d’Ito, Séminaire de Prob. Lect. Note Math. 920, 16 (1982), 238–247.MathSciNetGoogle Scholar
  32. 32.
    Yor, M., The laws of some Brownian functionals, Proceedings of ICM 1990 Kyoto 2 (1991), 1105–1112.MathSciNetGoogle Scholar
  33. 33.
    Young, L.C., An inequality of Hölder type connected with Stieltjes integration, Acta Math. 67 (1936), 251–282.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1996

Authors and Affiliations

  • Toshio Yamada
    • 1
  1. 1.Department of MathematicsRitsumeikan University BKCKusatsu, ShigaJapan

Personalised recommendations