Interacting diffusion systems over Zd

  • Tokuzo Shiga


Interacting diffusion systems are a class of diffusion processes taking values in an infinite product space of an interval, which models the variety of phenomena in physics and biology. This paper surveys the subject of interacting diffusion systems and related problems. Topics include:
  1. 1.


  2. 2.

    Stationary distributions and ergodic theorems in transient case.

  3. 3.

    Z d -shift invariance of stationary distributions.

  4. 4.

    Local extinction in transient case.

  5. 5.

    Uniformity and local extinction in recurrent case.

  6. 6.

    Parabolic Anderson model and sample Lyapunov exponent.

  7. 7.

    Finite systems of interacting diffusions.

  8. 8.

    Approximation of infinite systems via finite systems.

  9. 9.

    Methods and some technicalities.

  10. 9.1


  11. 9.2


  12. 9.3


  13. 9.4

    Liouville property.

  14. 9.5

    Random walk estimates.

  15. 9.6

    Moments estimates.

  16. 9.7

    Idea of the proof of the approximation result.



Random Walk Stationary Distribution Ergodic Theorem Local Extinction Infinite System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BCG1]
    M. Bramson, J.T. Cox and A. Greven: Ergodicity of critical spatial branching processes in low dimension, Ann. Probab. 21, 1946–1957 (1993).MathSciNetMATHCrossRefGoogle Scholar
  2. [BCG2]
    M. Bramson, J.T. Cox and A. Greven: Invariant measures of critical spatial branching processes in high dimensions, to appear in Ann. Probab. (1996).Google Scholar
  3. [C]
    J.T. Cox: Coalescing random walks and voter model consensus times on the torus in Z d. Ann. Probab. 17, 1333–1366 (1989)MathSciNetMATHCrossRefGoogle Scholar
  4. [CFG]
    J.T. Cox, K. Fleischmann and A. Greven: Comparison of interacting diffusions and an application to their ergodic theory,(preprint).Google Scholar
  5. [CGrel]
    J.T. Cox and A. Greven: On the long term behavior of some finite particle systems, Probab. Th. Rel. Fields 85, 195–237 (1990).MathSciNetMATHCrossRefGoogle Scholar
  6. [CGre2]
    J.T. Cox and A. Greven: Ergodic theorems for infinite systems of interacting diffusions, Ann. Probab. 22, 833–853 (1994).MathSciNetMATHCrossRefGoogle Scholar
  7. [CGri]
    J.T. Cox and D. Griffeath: Diffusive clustering in the two dimensional voter model, Ann. Probab. 14, 347–370 (1986).MathSciNetMATHCrossRefGoogle Scholar
  8. [CGS]
    J.T. Cox, A. Greven and T. Shiga: Finite and infinite systems of interacting diffusions, Probab. Th. Rel. Fields 103, 165–197 (1995).MathSciNetMATHCrossRefGoogle Scholar
  9. [CGS2]
    J.T. Cox, A. Greven and T. Shiga: Finite and infinite systems of interacting diffusions, Part II,(preprint).Google Scholar
  10. [CM]
    R.A. Carmona and S.A. Molchanov: Prabolic Anderson problem and intermittency, AMS Memoir 108, No. 518 (1994).Google Scholar
  11. [CV]
    R.A. Carmona and Viens: (personal communication).Google Scholar
  12. [D]
    D.A. Dawson: The critical measure diffusion process, Z. Wahr. verw. Geb. 40, 125–145 (1977).MATHCrossRefGoogle Scholar
  13. [Deu)]
    J.-D. Deuschel: Central limit theorem for an infinite lattice system of interacting diffusion processes, Ann. Probab. 16, 700–716 (1988)MathSciNetMATHCrossRefGoogle Scholar
  14. [Deu2]
    J-N. Deuschel: Algebraic L 2 -decay of attractive critical process on the lattice, Ann. Probab. 22, 264–293 (1994).MathSciNetMATHCrossRefGoogle Scholar
  15. [Dy]
    E.B. Dynkin: Sufficient statistics and extreme points, Ann. Probab. 6, 705–730 (1978).MathSciNetMATHCrossRefGoogle Scholar
  16. [DG]
    D.A. Dawson and A. Greven: Multiple time scale analysis of interacting diffusions, Prob. Th. Rel. Fields 95, 467–508 (1993).MathSciNetMATHCrossRefGoogle Scholar
  17. [K]
    M. Kimura: “Stepping stone”model of population, Ann. Rep. Nat. Inst. Gen. 3, 62–63 (1953).Google Scholar
  18. [KO]
    M. Kimura and T. Ohta: Theoretical Aspects of Population Genetics, Princeton University Press (1971).Google Scholar
  19. [L]
    T.M. Liggett: Interacting Particle Systems, Springer Verlag (1985).Google Scholar
  20. [LS]
    T.M. Liggett and F. Spitzer: Ergodic theorems for coupled random walks and other systems with locally interacting components, Z. Wahrsch. verw. Gebiete 56, 443–468 (1981).MathSciNetMATHCrossRefGoogle Scholar
  21. [NS]
    M. Notohara and T. Shiga: Convergence to genetically uniform state in stepping stone models of population genetics, J. Math. Biol. 10, 281–294 (1980).MathSciNetMATHCrossRefGoogle Scholar
  22. [Sa]
    K. Sato: Limit diffusions of some stepping stone models, J. Appl. Prob. 20, 460–471 (1983).MATHCrossRefGoogle Scholar
  23. [S1]
    T. Shiga: An interacting system in population genetics, J. Math. Kyoto Univ. 20, 213–243 (1990).MathSciNetGoogle Scholar
  24. [S2]
    T. Shiga: An interacting system in population genetics II, J. Math. Kyoto Univ. 20, 723–733 (1990).MathSciNetGoogle Scholar
  25. [S3]
    T. Shiga: Ergodic theorems and exponential decay of sample paths for certain interacting diffusion systems, Osaka J. Math. 29, 789–807 (1992).MathSciNetMATHGoogle Scholar
  26. [S4]
    T. Shiga: Stationary distribution problem for interacting diffusion systems, CRM Proceeding and Lecture Notes 5, 199–211 (1994).MathSciNetGoogle Scholar
  27. [S5]
    T. Shiga: A note on sample Lyapunov exponents of a class of SPDE,(preprint).Google Scholar
  28. [SS]
    T. Shiga and A. Shimizu- Infinite-dimensional stochastic differential equations and their applications, J. Math. Kyoto Univ. 20, 395–416 (1980).MathSciNetMATHGoogle Scholar
  29. [SU]
    T. Shiga and K. Uchiyama: Stationary states and their stability of the stepping stone model involving mutation and selection, Prob. Th. Rel. Fields 73, 87–117 (1986).MathSciNetMATHCrossRefGoogle Scholar
  30. [Sp]
    F. Spitzer: Principles of Random Walk, Springer-Verlag (1976).Google Scholar
  31. [W]
    S. Watanabe: A limit theorem of branching processes and continuous branching processes, J. Math. Kyoto Univ. 8, 141–167 (1968).MathSciNetMATHGoogle Scholar
  32. [WY]
    S. Watanabe and T. Yamada: On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ. 11, 155–167 (1971).MathSciNetMATHGoogle Scholar
  33. [ZMRS]
    Ya.B. Zeldovich, S.A. Molchanov, A.A. Ruzmaikin and D.D. Sokoloff: Intermittency, diffusion and generation in nonstationary random medium, Soviet Sci. Rev. Math. Phys. 7, 1–110 (1988).MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1996

Authors and Affiliations

  • Tokuzo Shiga
    • 1
  1. 1.Department of Applied PhysicsTokyo Institute of TechnologyOh-Okayama, Meguro-ku, Tokyo 152Japan

Personalised recommendations