Skip to main content

A class of integration by parts formulae in stochastic analysis I

  • Chapter
Book cover Itô’s Stochastic Calculus and Probability Theory

Abstract

Consider a Stratonovich stochastic differential equation

$$d{{\chi }_{t}}=X\left( {{\chi }_{_{t}}} \right)od{{B}_{t}}+A\left( {{\chi }_{t}} \right)dt$$
(1.1)

with C coefficients on a compact Riemannian manifold M, with associated differential generator \(A=\frac{1}{2}{{\Delta }_{M}}+Z\) and solution flow {ξt : t ≥ 0} of random smooth diffeomorphisms of M. Let Tξt: TM → TM be the induced map on the tangent bundle of M obtained by differentiating ξt with respect to the initial point. Following an observation by A. Thalmaier we extend the basic formula of [EL94] to obtain

$$Edf\left( T\xi .\left( h. \right) \right)=EF\left( \xi .\left( \chi \right) \right)\int_{0}^{T}{\left\langle T{{\xi }_{s}} \right.}\left( {{{\dot{h}}}_{s}} \right),X\left( {{\xi }_{s}}\left( \chi \right) \right)d\left. {{B}_{s}} \right\rangle $$
(1.2)

where \(F\in FC_{b}^{\infty }\left( {{C}_{\chi }}\left( M \right) \right)\), the space of smooth cylindrical functions on the space C x (M) of continuous paths γ : [0,T] → M with γ(0) = x, dF is its derivative, and h. is a suitable adapted process with sample paths in the Cameron-Martin space L 2,10 ([0,T];T x M).Set F xt = σ{ξs(x) : 0 ≤ st} Taking conditional expectation with respect to.F xT , formula (1.2) yields integration by parts formulae on C x (M) of the form

$$EdF\left( \gamma \right)\left( {{\overline{V}}^{h}} \right)=EF\left( \gamma \right)\delta {{\overline{V}}^{h}}\left( \gamma \right)$$
(1.3)

where \({{\overline{V}}^{h}}\) is the vector field on C x(M)

$${{\overline{V}}^{h}}{{\left( \gamma \right)}_{t}}-E\left\{ T{{\xi }_{t}}\left( {{h}_{t}} \right)\left| \xi .\left( \chi \right)=\gamma \right. \right\}$$

and \(\delta {{\overline{V}}^{h}}:{{C}_{x}}\left( M \right)\to \) is given by

$$\delta {{\overline{V}}^{h}}(\gamma )=IE\left\{ \int_{0}^{T}{<T{{\xi }_{s}}({{{\dot{h}}}_{s}}),X({{\xi }_{s}}(x))d{{B}_{s}}>|\xi .(x)=\gamma } \right\}$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Aida. On the irreducibility of certain Dirichlet forms on loop spaces over compact homogeneous spaces. To appear in ‘New Trends in stochastic Analysis’, Proc. Taniguchi Symposium, Sept. 1995, Charingworth, ed. K. D. Elworthy and S. Kusuoka, I. Shigekawa, World Scientific Press.

    Google Scholar 

  2. H. Airault and P. Malliavin. Integration by parts formulas and dilation vector fields on elliptic probability spaces. Institut Mittag-Leffler preprints No. 24, 1994/95.

    Google Scholar 

  3. J. M. Bismut. Martingales, the Malliavin calculus and harmonic theorems. In D. Williams, editor, Stochastic Integrals, Lecture Notes in Maths. 851, pp. 85–109. Springer-Verlag, 1981.

    Google Scholar 

  4. J. M. Bismut. Large deviations and the Malliavin calculus. Progress in Math. 45. Birkhauser, 1984.

    Google Scholar 

  5. CM] A.-B. Cruzeiro and P. Malliavin. Curvatures of path spaces and stochastic analysis. Institut Mittag-Leffler preprints No. 16, 1994/95.

    Google Scholar 

  6. B. Driver. A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact Riemannian manifold J. Funct. Anal., Vol. 100, pp. 272–377, 1992.

    Article  MathSciNet  Google Scholar 

  7. B. Driver. The Lie bracket of adapted vector fields on Wiener spaces. Preprint, 1995.

    Google Scholar 

  8. Bruce K. Driver. Towards calculus and geometry on path spaces. In Stochastic Analysis: AMS Proceedings of symposium in pure Math. Series, pp. 423–426. AMS. Providence, Rhode Island, 1995.

    Google Scholar 

  9. K.D. Elworthy and Xue-Mei Li. Formulae for the derivatives of heat semi-groups. J. Funct. Anal., Vol. 125, No. 1, pp. 252–286, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. D. Elworthy, Sept. 1995, Charingworth, ed. K. D. Elworthy and S. Kusuoka, I. Shigekawa, World Scientific Press, 1995.

    Google Scholar 

  11. K.D. Elworthy. Stochastic Differential Equations on Manifolds. Lecture Notes Series 70, Cambridge University Press, 1982.

    Google Scholar 

  12. K. D. Elworthy. Stochastic flows on Riemannian manifolds. In M. A. Pinsky and V. Wihstutz, editors, Diffusion processes and related problems in analysis, volume II. Birkhauser Progress in Probability, pp. 37–72. Birkhauser, Boston, 1992.

    Google Scholar 

  13. D. G. Ebin and J. Marsden. Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math., Vol. 92, No. 1, pp. 102–163, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  14. O. Enchev and D.W. Stroock. Towards a Riemannian geometry on the path space over a Riemannian manifold. J. Funct. Anal., Vol. 134, No. 2, pp. 392–416, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. D. Elworthy and M. Yor. Conditional expectations for derivatives of certain stochastic flows. In J. Azéma, P A. Meyer, and M. Yor, editors, Sem.. de Prob. XXVII. Lecture Notes in Maths. 1557, pp. 159–172. Springer-Verlag, 1993.

    Google Scholar 

  16. S. Fang and P. Malliavin. Stochastic analysis on the path spaces of a Riemannian manifold. J. Funct. Anal., Vol. 118, pp. 249–274, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Hsu. Inégalités de sobolev logarithmiques sur un espace de chemins. C. R. Acad. Sci. Paris, t. 320. Série I., pp. 1009–1012, 1995.

    Google Scholar 

  18. S. Kobayashi and K. Nomizu. Foundations of differential geometry, Vol. IL Interscience Publishers, 1969.

    MATH  Google Scholar 

  19. Xue-Mei Li. Stochastic differential equations on noncompact manifolds: moment stability and its topological consequences. Probab. Theory Relat. Fields, Vol. 100, No. 4, pp. 417–428, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  20. LN] R. Leandre and J. Norris. Integration by parts and Cameron-Martin formulas for the free-path space of a compact Riemannian manifold. Warwick Preprints: 6/1995.

    Google Scholar 

  21. E. Nelson. Quantum Flucatuations. Princeton University Press, Princeton, 1984.

    Google Scholar 

  22. SZ] D. W. Stroock and O. Zeitouni. Variations on a theme by Bismut. Preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Elworthy, K.D., Li, XM. (1996). A class of integration by parts formulae in stochastic analysis I. In: Ikeda, N., Watanabe, S., Fukushima, M., Kunita, H. (eds) Itô’s Stochastic Calculus and Probability Theory. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68532-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68532-6_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68534-0

  • Online ISBN: 978-4-431-68532-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics