Skip to main content

Decomposition at the maximum for excursions and bridges of one-dimensional diffusions

  • Chapter
Itô’s Stochastic Calculus and Probability Theory

Abstract

In his fundamental paper [25], Itô showed how to construct a Poisson point process of excursions of a strong Markov process X over time intervals when X is away from a recurrent point a of its statespace. The point process is parameterized by the local time process of X at a. Each point of the excursion process is a path in a suitable space of possible excursions of X,starting at a at time 0, and returning to a for the first time at some strictly positive time ζ, called the lifetime of the excursion. The intensity measure of the Poisson process of excursions is a σ-finite measure Λ on the space of excursions, known as Itô’s excursion law. Accounts of Itô’s theory of excursions can now be found in several textbooks [48, 46, 10]. His theory has also been generalized to excursions of Markov processes away from a set of states [34, 19, 10] and to excursions of stationary, not necessarily Markovian processes [38].

Research supported in part by N.S.F. Grants MCS91-07531 and DMS-9404345

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Aldous and J. Pitman. Brownian bridge asymptotics for random mappings. Random Structures and Algorithms, 5: 487–512, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  2. D.J. Aldous. The continuum random tree I. Ann. Probab., 19: 1–28, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  3. D.J. Aldous. The continuum random tree II: an overview. In M.T. Barlow and N.H. Bingham, editors, Stochastic Analysis, pages 23–70. Cambridge University Press, 1991.

    Chapter  Google Scholar 

  4. D.J. Aldous. The continuum random tree III. Ann. Probab., 21: 248–289, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  5. D.J. Aldous. Recursive self-similarity for random trees, random triangulations and Brownian excursion. Ann. Probab., 22: 527–545, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Asmussen, P. Glynn, and J. Pitman. Discretization error in simulation of one-dimensional reflecting Brownian motion. To appear in Ann. Applied Prob.,1996.

    Google Scholar 

  7. Ph. Biane. Decompositions of Brownian trajectories and some applications. In A. Badrikian, P-A Meyer, and J-A Yan, editors, Probability and Statistics; Rencontres Franco-Chinoises en Probabilités et Statistiques; Proceedings of the Wuhan meeting, pages 51–76. World Scientific, 1993.

    Google Scholar 

  8. Ph. Biane. Some comments on the paper: “Brownian bridge asymptotics for random mappings” by D. J. Aldous and J. W. Pitman. Random Structures and Algorithms, 5: 513–516, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ph. Biane and M. Yor. Valeurs principales associées aux temps locaux Browniens. Bull. Sci. Math. (2), 111: 23–101, 1987.

    MathSciNet  MATH  Google Scholar 

  10. R. M. Blumenthal. Excursions of Markov processes. Birkhâuser, 1992.

    Google Scholar 

  11. K.L. Chung. Excursions in Brownian motion. Arkiv fur Matematik, 14: 155–177, 1976.

    Article  MATH  Google Scholar 

  12. E. Csâki; A. Földes, and P. Salminen. On the joint distribution of the maximum and its location for a linear diffusion. Annales de l’Institut Henri Poincaré, Section B, 23: 179–194, 1987.

    MATH  Google Scholar 

  13. I.V. Denisov. A random walk and a Wiener process near a maximum. Theor. Prob. Appl., 28: 821–824, 1984.

    Article  MATH  Google Scholar 

  14. P. Fitzsimmons, J. Pitman, and M. Yor. Markovian bridges: construction, Palm interpretation, and splicing. In Seminar on Stochastic Processes, 1992, pages 101–134. Birkhâuser, Boston, 1993.

    Chapter  Google Scholar 

  15. P.J. Fitzsimmons. Excursions above the minimum for diffusions. Unpublished manuscript, 1985.

    Google Scholar 

  16. J.-F. Le Gall. Brownian excursions, trees and measure-valued branching processes. Ann. Probab., 19: 1399–1439, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  17. J.F. Le Gall. Une approche élémentaire des théorèmes de décomposition de Williams. In Séminaire de Probabilités XX, pages 447–464. Springer, 1986. Lecture Notes in Math. 1204.

    Google Scholar 

  18. J.F. Le Gall. The uniform random tree in a brownian excursion. Probab. Th. Rel. Fields, 96: 369–383, 1993.

    Article  MATH  Google Scholar 

  19. R.K. Getoor and M.J. Sharpe. Excursions of dual processes. Advances in Mathematics, 45: 259–309, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  20. I.I. Gikhman On a nonparametric criterion of homogeneity for k samples. Theory Probab. Appl., 2: 369–373, 1957.

    Article  Google Scholar 

  21. J.-P. Imhof. Density factorizations for Brownian motion, meander and the three-dimensional Bessel process, and applications. Journal of Applied Probability, 21: 500–510, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  22. J.-P. Imhof. On Brownian bridge and excursion. Studia Sci. Math. Hangar., 20: 1–10, 1985.

    MathSciNet  MATH  Google Scholar 

  23. J. P. Imhof. On the range of Brownian motion and its inverse process. Annals of Probability, 13: 1011–1017, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. E. Ismail and D.H. Kelker. Special functions, Stieltjes transforms, and infinite divisibility. SIAM J. Math. Anal., 10: 884–901, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Itô. Poisson point processes attached to Markov processes. In Proc. 6th Berk. Symp. Math. Stat. Prob., volume 3, pages 225–240, 1971.

    Google Scholar 

  26. K. Itô and H.P. McKean. Diffusion Processes and their Sample Paths. Springer, 1965.

    MATH  Google Scholar 

  27. Th. Jeulin. Temps local et théorie du grossissement: application de la théorie du grossissement à l’étude des temps locaux browniens. In Grossissements de filtrations: exemples et applications. Séminaire de Calcul Stochastique, Paris 1982/83, pages 197–304. Springer-Verlag, 1985. Lecture Notes in Math. 1118.

    Google Scholar 

  28. D.P. Kennedy. The distribution of the maximum Brownian excursion. J. Appl. Prob., 13: 371–376, 1976.

    Article  MATH  Google Scholar 

  29. J. Kent. Some probabilistic properties of Bessel functions. Annals of Probability, 6: 760–770, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Kiefer. K-sample analogues of the Kolmogorov-Smirnov and Cramér-von Mises tests. Ann. Math. Stat., 30: 420–447, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  31. F.B. Knight. Characterization of the Lévy measure of inverse local times of gap diffusions. In Seminar on Stochastic Processes, 1981, pages 53–78. Birkhäuser, Boston, 1981.

    Chapter  Google Scholar 

  32. S. Kotani and S. Watanabe. Krein’s spectral theory of strings and generalized diffusion processes. In Functional Analysis in Markov Processes, pages 235–249. Springer, 1982. Lecture Notes in Math. 923.

    Google Scholar 

  33. P. Lévy. Processus Stochastiques et Mouvement Brownien. Gauthier-Villars, Paris, 1965. (first ed. 1948 ).

    MATH  Google Scholar 

  34. B. Maisonneuve. Exit systems. Ann. of Probability, 3: 399–411, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  35. P.W. Millar. Random times and decomposition theorems. In Proc. of Symp. in Pure Mathematics, volume 31, pages 91–103, 1977.

    MathSciNet  Google Scholar 

  36. P.W. Millar. A path decomposition for Markov processes. Ann. Probab., 6: 345–348, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  37. S. A. Molchanov and E. Ostrovski. Symmetric stable processes as traces of degenerate diffusion processes. Theor. Prob. Appl., 14, No. 1: 128–131, 1969.

    Article  MATH  Google Scholar 

  38. J. Pitman. Stationary excursions. In Séminaire de Probabilités XXI, pages 289–302. Springer, 1986. Lecture Notes in Math. 1247.

    Google Scholar 

  39. J. Pitman. Cyclically stationary Brownian local time proceses. To appear in Probability Theory and Related Fields, 1996.

    Google Scholar 

  40. J. Pitman and M. Yor. Bessel processes and infinitely divisible laws. In Stochastic Integrals, pages 285–370. Springer, 1981. Lecture Notes in Math. 851.

    Chapter  Google Scholar 

  41. J. Pitman and M. Yor. A decomposition of Bessel bridges. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, 59: 425–457, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  42. J. Pitman and M. Yor. Dilatations d’espace-temps, réarrangements des trajectoires browniennes, et quelques extensions d’une identité de Knight. C.R. Acad. Sci. Paris, t. 316, Série I: 723–726, 1993.

    MathSciNet  MATH  Google Scholar 

  43. J. Pitman and M. Yor. Some extensions of Knight’s identity for Brownian motion. In preparation, 1995.

    Google Scholar 

  44. J. Pitman and M. Yor. Laws of homogeneous functionals of Brownian motion. In preparation, 1996.

    Google Scholar 

  45. J. Pitman and M. Yor. Quelques identités en loi pour les processus de Bessel. To appear in: Hommage à P.A. Meyer et J. Neveu, Astérisque, 1996.

    Google Scholar 

  46. D. Revuz and M. Yor. Continuous martingales and Brownian motion. Springer, Berlin-Heidelberg, 1994. 2nd edition.

    Google Scholar 

  47. L. C. G. Rogers. Williams’ characterization of the Brownian excursion law: proof and applications. In Séminaire de Probabilités XV,pages 227–250. Springer-Verlag, 1981. Lecture Notes in Math. 850.

    Google Scholar 

  48. L.C.G. Rogers and D. Williams. Diffusions, Markov Processes and Martingales. Wiley, 1987.

    MATH  Google Scholar 

  49. T. Shiga and S. Watanabe. Bessel diffusions as a one-parameter family of diffusion processes. Z. Wahrsch. Verw. Gebiete, 27: 37–46, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  50. I. Vincze. Einige zweidimensionale Verteilungs-und Grenzverteilungssätze in der Theorie der georneten Stichproben. Magyar Tud. Akad. Mat. Kutató Int. Kôzl., 2: 183–209, 1957.

    MathSciNet  Google Scholar 

  51. G.N. Watson. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge University Press, 1944.

    MATH  Google Scholar 

  52. W. Werner. Quelques propriétés du mouvement brownien plan. Thèse de doctorat, Université Paris V I, March 1993.

    Google Scholar 

  53. W. Werner. Sur la forme des composantes connexes du complémentaire de la courbe brownienne plane. Prob. Th. and Rel. Fields, 98: 307–337, 1994.

    Article  MATH  Google Scholar 

  54. D. Williams. Decomposing the Brownian path. Bull. Amer. Math. Soc., 76: 87 1873, 1970.

    Google Scholar 

  55. D. Williams. Path decomposition and continuity of local time for one dimensional diffusions I. Proc. London Math. Soc. (3), 28: 738–768, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  56. D. Williams. Diffusions, Markov Processes, and Martingales, Vol. 1: Foundations. Wiley, Chichester, New York, 1979.

    Google Scholar 

  57. D. Williams. Brownian motion and the Riemann zeta-function. In Disorder in Physical Systems, pages 361–372. Clarendon Press, Oxford, 1990.

    Google Scholar 

  58. M. Yor. Some Aspects of Brownian Motion. Lectures in Math., ETH Zürich. Birkhaüser, 1992. Part I: Some Special Functionals.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Pitman, J., Yor, M. (1996). Decomposition at the maximum for excursions and bridges of one-dimensional diffusions. In: Ikeda, N., Watanabe, S., Fukushima, M., Kunita, H. (eds) Itô’s Stochastic Calculus and Probability Theory. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68532-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68532-6_19

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68534-0

  • Online ISBN: 978-4-431-68532-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics