Analytic approach to Yor’s formula of exponential additive functionals of Brownian motion

  • Shin-ichi Kotani


Yor [4] obtained an exact formula for a one-dimensional Brownian motion {B t }:
$${{E}_{0}}(f(\int_{0}^{t}{{{e}^{2{{B}_{S}}}}d}s)g({{e}^{{{B}_{t}}}}))=c(t)\int_{0}^{\infty }{dzg(y)f(\frac{1}{z})}\exp \left\{ -\frac{z(1+{{y}^{2}})}{2}{{\psi }_{yz}}(t) \right\},$$
$$c(t)={{(2{{\pi }^{3}}t)}^{-\frac{1}{2}}}\exp (\frac{{{\pi }^{2}}}{2t}),{{\psi }_{r}}(t)=\int_{0}^{\infty }{\exp }(-\frac{{{u}^{2}}}{2t}-\gamma \cosh u)\sinh u\sin (\frac{\pi u}{t})du.$$


Green Function Heat Kernel Neumann Boundary Condition Additive Functional Tauberian Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kac, I. S., Generalization of an asymptotic formula of V.A.Marcenko for spectral functions of a second order boundary value problem, Math. USSR. Izv. 7 (1973), 422–436.CrossRefGoogle Scholar
  2. 2.
    Kawazu, K., and Tanaka, H., On the maximum of a diffusion process in a drifted Brownian environment, Séminaire de Probabilités, LMN 1557, 78–85.Google Scholar
  3. 3.
    Kotani, S., and Watanabe, S., Krein’s spectral theory of strings and generalized diffusion processes, Proceedings of Functional Analysis in Markov processes, ed. Fukushima, M., LMN 923, 235–259.CrossRefGoogle Scholar
  4. 4.
    Yor, M., On some exponential functionals of brownian motion, Adv. Appl. Probab. 24 (1992), 509–531.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1996

Authors and Affiliations

  • Shin-ichi Kotani
    • 1
  1. 1.Department of Mathematics, Graduate School of ScienceOsaka UniversityToyonaka, Osaka 560Japan

Personalised recommendations