Skip to main content

Abstract

We introduce basic concepts for the modeling of radiative transfer using the invariant imbedding approach. We show, for a one-dimensional reflection problem, how an initial value problem is formulated. We obtain a differential equation with the independent variable being the thickness, and an initial condition, for thickness zero. We describe the numerical procedure for integrating this equation. Tables of reflection functions are presented. Cauchy-initial value-problems for source and internal intensity functions are also treated. This chapter serves as an introduction to the more advanced concepts in Appendix A, as well as the remaining chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. W. Busbridge, The Mathematics of Radiative Transfer, Cambridge University Press, Cambridge, 1960.

    Google Scholar 

  2. S. Chandrasekhar, Radiative Transfer, Dover Publications, New York, 1960.

    Google Scholar 

  3. V. Kourganoff, Basic Methods in Transfer Problems, Dover Publications, New York, 1963.

    Google Scholar 

  4. V. V. Sobolev, Light Scattering in Planetary Atmospheres, Pergamon Press, New York, 1974.

    Google Scholar 

  5. R. Bellman, R. Kalaba and M. Prestrud, Invariant Imbedding and Radiative Transfer in Slabs of Finite Thickness, American Elsevier Publishing Co., New York, 1963.

    Google Scholar 

  6. R. E. Bellman, H. H. Kagiwada, R. E. Kalaba and M. C. Prestrud, Invariant Imbedding and Time-Dependent Transport Processes, American Elsevier Publishing Co., New York, 1964.

    Google Scholar 

  7. H. Kagiwada, R. Kalaba and S. Ueno, Multiple Scattering Processes: Inverse and Direct, Addison-Wesley Publishing Company, Reading, Mass., 1975.

    Google Scholar 

  8. H. H. Kagiwada and R. E. Kalaba, Integral Equations via Invariant Imbedding, Addison-Wesley Publishing Co., Reading, Mass., 1975.

    Google Scholar 

  9. A. P. Sage, “Invariant Imbedding in Control, Estimation, and System Identification,” Appl. Math. Comput., Vol. 45, 1991, p. 99.

    Article  Google Scholar 

  10. J. L. Calvet and G. Viargues, “Invariant Imbedding and Parallelism in Dynamic Programming for Feedback Control,” J. Optimiz. Theory Appl., Vol. 87, 1995, p. 121.

    Article  Google Scholar 

  11. J. Garnier, “Stochastic Invariant Imbedding. Application to Stochastic Differential Equations with Boundary Conditions,” Prob. Theory & Related Fields, Vol. 103, 1995, p. 249.

    Article  Google Scholar 

  12. I. S. Ayoubi, “The Riemann-Green Function and the Invariant Imbedding Equations for Hyperbolic Systems of First-order,” Appl. Math. Comp., Vol. 55, 1993, p. 101.

    Article  Google Scholar 

  13. M. E. Davison and R. C. Winther, “A General Approach to Splitting and Invariant Imbedding for Linear Wave Equations,” J. Math. Anal. Appl., Vol. 188, 1994, p. 158.

    Article  Google Scholar 

  14. A. J. Haines and M. V. deHoop, “An Invariant Imbedding Analysis of General Wave Scattering Problems,” J. Math. Phys., Vol. 37, 1996, p. 3854.

    Article  Google Scholar 

  15. Y. B. Band and I. Tuvi, “Quantum Rearrangement Scattering Calculations Using the Invariant Imbedding Method,” J. Chem. Phys., Vol. 100, 1994, p. 8869.

    Article  Google Scholar 

  16. J. Corones and Z. Sun, “Simultaneous Reconstruction of Material and Transient Source Parameters Using the Invariant Imbedding Method,” J. Math. Phys., Vol. 34, 1993, p. 1824.

    Article  Google Scholar 

  17. S. He and S. Strom, “The Electromagnetic Inverse Problem in the Time Domain for a Dissipative Slab and a Point Source Using Invariant Imbedding: Reconstruction of the Permittivity and Conductivity,” J. Comp. Appl. Math., Vol. 42, 1992, p. 137.

    Article  Google Scholar 

  18. S. K. Srinivasan and R. Vasudevan, “Particle Multiplicity Distribution à la Invariant Imbedding and Natural Scaling,” Comp. & Math. Appl., Vol. 22, 1991, p. 59.

    Article  Google Scholar 

  19. V. H. Weston, “Invariant Imbedding for the Wave Equation in Three Dimensions and the Applications to the Direct and Inverse Problems,” Inverse Problems, Vol. 6, 1990, p. 1075.

    Article  Google Scholar 

  20. G. Nadimuthu and E. S. Lee, “Invariant Imbedding Filter in the Modeling of Water Resources,” Comp. & Math. Appl., Vol. 21, 1991, p. 9.

    Article  Google Scholar 

  21. D. E. Womble, R. C. Allen, Jr. and L. S. Baca, “Invariant Imbedding and the Method of Lines for Parallel Computers,” Parallel Computing, Vol. 11, 1989, p. 263.

    Article  Google Scholar 

  22. M. I. Mischenko, “The Fast Invariant Imbedding Method for Polarized Light: Computational Aspects and Numerical Results for Rayleigh,” J. Quant. Spectrosc. Radiat. Transfer, Vol. 43, 1990, p. 163.

    Article  Google Scholar 

  23. A. P. Wang, “Basic Equations of Three Dimensional Radiative Transfer,” Journal of Mathematical Physics, Vol. 31, No. 10, 1990, p. 175.

    Article  Google Scholar 

  24. S. Ueno and A. P. Wang, “Invariant Imbedding and Order-of-Scattering Theory in Radiation Field,” Comp. & Math. Appl., Vol. 27, 1994, p. 175.

    Article  Google Scholar 

  25. B. Carnahan, H. Luther and J. Wilkes, Applied Numerical Methods, Wiley, New York, 1969.

    Google Scholar 

  26. E. G. Yanovitskij, Light Scattering in Inhomogeneous Atmospheres, Springer-Verlag, New York, 1996.

    Google Scholar 

  27. Jacqueline Lenoble, Atmospheric Radiative Transfer, A. Deepak Pub., 1993.

    Google Scholar 

  28. K. Y. Kondratyev, V. V. Kozoderov and O. I. Smokty, Remote Sensing of the Earth from Space: Atmospheric Correction, Springer-Verlag, New York, 1992.

    Book  Google Scholar 

  29. G. A. D’Almeida, P. Koepke and E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics, A. Deepak Pub., 1991.

    Google Scholar 

  30. W. Kalkofen, ed., Numerical Radiative Transfer, Cambridge University Press, Cambridge, 1988.

    Google Scholar 

  31. Jacqueline Lenoble, ed., Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures, A. Deepak Pub., 1985.

    Google Scholar 

  32. H. C. Van de Hulst, Light Scattering by Small Particles, Dover, New York, 1982.

    Google Scholar 

  33. R. Bellman and G. M. Wing, An Introduction to Invariant Imbedding, Soc. Indus. Appl. Math., 1962.

    Google Scholar 

  34. C. F. Bohren, ed., Selected Papers on Scattering in the Atmosphere, SPIE Optical Engineering Press, Bellingham, WA, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Natsuyama, H.H., Ueno, S., Wang, A.P. (1998). Basic Concepts. In: Terrestrial Radiative Transfer. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68527-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68527-2_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-70206-1

  • Online ISBN: 978-4-431-68527-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics