Validation of a Noninvasive Measurement of Regional Hemoglobin Oxygen Saturation

  • Valerie Pollard
  • Eric A. DeMelo
  • Donald J. Deyo
  • Rebecca Dalmeida
  • R. Widman
  • Donald S. Prough
Conference paper


Near-infrared (NIR) spectroscopy may provide a continuous and noninvasive assessment of global brain hemoglobin oxygen saturation by measuring the differential absorption of infrared light [1–3]. As biological tissues are relatively transparent to infrared light at wavelengths between 400 and 1000 nm, infrared light may penetrate skin, subcutaneous tissue, bone, and dura to the brain [4–7], where it is absorbed by oxygenated hemoglobin, deoxygenated hemoglobin, and cytochrome aa3. Thus, the attenuation of infrared light of specific wavelengths by these chromophores may be used to measure brain oxygenation [1, 3, 8–11]. The hemoglobin oxygen saturation measured by the cerebral oximeter receives contributions from arterial, venous, and capillary blood vessels, with a predominantly venous contribution [11, 12], and may reflect the balance between cerebral oxygen consumption and delivery.


Infrared Light Hemoglobin Oxygen Saturation Cerebral Oximetry Pulse Oximeter Reading Cerebral Oximeter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McCormick PW, Stewart M, Ray P, Lewis G, Dujovny M, Ausman JI (1991) Measurement of regional cerebrovascular hemoglobin oxygen saturation in cats using optical spectroscopy. Neurol Res 13: 65–70PubMedGoogle Scholar
  2. 2.
    Chance B, Nioka S, Kent J, McCully K, Fountain M, Greenfeld R, Holtom G (1988) Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle. Anal Biochem 174: 698–707PubMedCrossRefGoogle Scholar
  3. 3.
    Jöbsis-Vandervleit FF, Fox E, Sugioka K (1987) Monitoring of cerebral oxygenation and cytochrome aa3 redox state. Int Anesthesiol Clin 25: 209–230CrossRefGoogle Scholar
  4. 4.
    Jöbsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198: 1264–1267PubMedCrossRefGoogle Scholar
  5. 5.
    Delpy DT, Cope M, van der Zee P, Arridge S, Wray S, Wyatt J (1988) Estimation of optical path length through tissue from direct time of flight measurement. Phys Med Biol 33: 1433–1442PubMedCrossRefGoogle Scholar
  6. 6.
    Chance B, Leigh JS, Miyake H, Smith DS, Nioka S, Greenfeld R, Finander M, Kaufmann K, Levy W, Young M, Cohen P, Yoshioka H, Boretsky R (1988) Comparison of time-resolved and-unresolved measurements of deoxyhemoglobin in brain. Proc Natl Acad Sci USA 85: 4971–4975PubMedCrossRefGoogle Scholar
  7. 7.
    McCormick PW, Stewart M, Goetting M, Dujovny M, Lewis G, Ausman JI (1991) Noninvasive cerebral optical spectroscopy for monitoring cerebral oxygen delivery and hemodynamics. Crit Care Med 19: 89–97PubMedCrossRefGoogle Scholar
  8. 8.
    Wray S, Cope M, Delpy DT, Wyatt J, Reynolds EOR (1988) Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation. Biochim Biophys Acta 933: 184–192PubMedCrossRefGoogle Scholar
  9. 9.
    Keizer HH, Jöbsis-Vander Vliet FF, Lucas SS, Piantadosi CA, Sylvia AL (1985) The near-infrared (NIR) absorption band of cytochrome aa3 in purified enzyme, isolated mitochondria and in the intact brain in situ. Adv Exp Med Biol 191: 823–832PubMedGoogle Scholar
  10. 10.
    Kariman K, Hempel FG, Jöbsis FF, Burns SR, Saltzman HA (1981) In vivo comparison of cerebral tissue PO2 and cytochrome aa3 reduction-oxidation state in cats during hemorrhagic shock. J Clin Invest 68: 21–27PubMedCrossRefGoogle Scholar
  11. 11.
    McCormick PW, Stewart M, Lewis G, Dujovny M, Ausman JI (1992) Intracerebral penetration of infrared light. J Neurosurg 76: 315–318PubMedCrossRefGoogle Scholar
  12. 12.
    Mchedlishvili G (1986) Arterial behavior and blood circulation in the brain. Plenum, New York, pp 55–60Google Scholar
  13. 13.
    McCormick PW, Stewart M, Goetting M, Balakrishnan G (1991) Regional cerebrovascular oxygen saturation measured by optical spectroscopy in humans. Stroke 22: 596–602PubMedCrossRefGoogle Scholar
  14. 14.
    Smith DS, Levy W, Maris M, Chance B (1990) Reperfusion hyperoxia in brain after circulatory arrest in humans. Anesthesiology 73: 12–19PubMedCrossRefGoogle Scholar
  15. 15.
    Delpy DT, Cope M, Cady EB, Wyatt JS, Hamilton PA, Hope PL, Wray S, Reynolds EOR (1987) Cerebral monitoring in newborn infants by magnetic resonance and near infrared spectroscopy. Scand J Clin Lab Invest 188: 9–17Google Scholar
  16. 16.
    Tamura M, Hazeki O, Nioka S, Chance B, Smith DS (1988) The simultaneous measurements of tissue oxygen concentration and energy state by near-infrared and nuclear magnetic resonance spectroscopy. Adv Exp Med Biol 222: 359–363PubMedGoogle Scholar
  17. 17.
    Colacino JM, Grubb B, Jöbsis FF (1981) Infra-red technique for cerebral blood flow: comparison with 133Xenon clearance. Neurol Res 3: 17–31PubMedGoogle Scholar
  18. 18.
    Pollard V, DeMelo E, Deyo DJ, Stoddard H, Hoffmann DJ, Prough DS (1994) Generation and validation of an algorithm for brain oxygen monitoring. Anesth Analg 78: S343Google Scholar
  19. 19.
    Van der Zee P, Delpy T (1987) Simulation of the point spread function for light in tissue by a Monte Carlo Model. Adv Exp Med Biol 215: 179–191PubMedGoogle Scholar
  20. 20.
    Wyatt JS, Cope M, Delpy DT, Van der Zee P, Arridge S, Edwards AD, Reynolds EOR (1990) Measurement of optical path length for cerebral near infrared spectroscopy in newborn infants. Dev Neurosci 12: 140–144PubMedCrossRefGoogle Scholar
  21. 21.
    Van der Zee P, Cope M, Arridge SR, Essenpreis M, Potter LA, Edwards AD, Wyatt JS, McCormick DC, Roth SC, Reynolds EOR, Delpy DT (1992) Experimentally measured optical path lengths for the adult head, calf, and forearm, and the head of the newborn infant as a function of interoptode spacing. Adv Exp Med Biol 316: 143–153PubMedCrossRefGoogle Scholar
  22. 22.
    Portnoy HD, Chopp M, Branch C (1983) Hydraulic model of myogenic autoregulation and the cerebrovascular bed: the effects of altering systemic arterial pressure. Neurosurgery 13: 482–498PubMedCrossRefGoogle Scholar
  23. 23.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1: 307–310PubMedCrossRefGoogle Scholar
  24. 24.
    Cruz J (1993) Combined continuous monitoring of systemic and cerebral oxygenation in acute brain injury: preliminary observations. Crit Care Med 21: 1225–1232PubMedCrossRefGoogle Scholar
  25. 25.
    Sheinberg M, Kanter MJ, Robertson CS, Contant CF, Narayan RK, Grossman RG (1992) Continuous monitoring of jugular venous oxygen saturation in headinjured patients. J Neurosurg 76: 212–217PubMedCrossRefGoogle Scholar
  26. 26.
    Shenkin HA, Scheuerman WG, Spitz EB, Groff RA (1949) Effect of change of position upon the cerebral circulation of man. J Appl Physiol 2: 317–326PubMedGoogle Scholar
  27. 27.
    Mueller SM, Heistad DD, Marcus ML (1977) Total and regional cerebral blood flow during hypotension, hypertension and hypocapnia. Effect of sympathetic denervation in dogs. Circ Res 41: 350–356PubMedGoogle Scholar
  28. 28.
    Kontos HA (1981) Regulation of the cerebral circulation. Annu Rev Physiol 43: 397–407PubMedCrossRefGoogle Scholar
  29. 29.
    Harris DNF, Bailey SM (1993) Near-infrared spectroscopy in adults. Anaesthesia 48: 694–696PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1995

Authors and Affiliations

  • Valerie Pollard
    • 1
  • Eric A. DeMelo
    • 1
  • Donald J. Deyo
    • 1
  • Rebecca Dalmeida
    • 1
  • R. Widman
    • 2
  • Donald S. Prough
    • 1
  1. 1.Department of AnesthesiologyThe University of Texas Medical Branch in GalvestonGalvestonUSA
  2. 2.Somanetics Corp.TroyUSA

Personalised recommendations