Skip to main content

Multimodal Evaluation of Cerebral Oxygen Metabolism Disturbances in Patients with Severe Head Injury: Special Reference to Cerebrovascular CO2 Reactivity

  • Conference paper
Neurochemical Monitoring in the Intensive Care Unit
  • 57 Accesses

Abstract

In the management of severe head injury patients, hyperventilation (HV) routinely has been used for reduction of intracranial pressure (ICP) or improvement of cerebral acidosis that might otherwise increase the risk of ischemic brain damage [1, 2]. Cerebrovascular CO2 reactivity induced by HV, which has a direct relationship with reduction of cerebral blood flow (CBF) and ICP [3], also has been suggested to have a close relationship with the prognosis of patients with severe head injuries [4, 5]. This study was aimed at evaluating disturbances in cerebral oxygen metabolism and cerebral hemodynamics, and related factors, on the basis of CO2 reactivity induced by HV in comatose patients with severe head injuries. To this end, we have introduced and analyzed a computerized multimodal system for continuously monitoring jugular bulb venous oxygen saturation (SjO2), arterial oxygen saturation measured by pulse oximeter (SpO2), transcranial Doppier (TCD), end-tidal CO2 partial pressure (PetCO2), ICP, cerebral perfusion pressure (CPP), and Fourier-transformed quantitative electroencephalogram (qEEG) [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cruz J, Miner ME (1986) Modulating cerebral oxygen delivery and extraction in acute traumatic coma. In: Miner ME, Wagner KA (eds) Neurotrauma. Treatment, rehabilitation, and related issues. Butterworths, Boston, pp 55–72

    Google Scholar 

  2. Patel PM (1993) Hyperventilation as a therapeutic intervention: do the potential benefits outweigh the known risks? J Neurosurg Anesthesiol 5: 62–65

    PubMed  CAS  Google Scholar 

  3. Marmarou A, Bandoh K, Yoshihara M, Tsuji O (1993) Measurement of vascular reactivity in head-injured patients. Acta Neurochir 59(Suppl): 18–21

    CAS  Google Scholar 

  4. Nordström CH, Messeter K, Sundbärg G, Schalén W, Werner M, Ryding E (1988) Cerebral blood flow, vasoreactivity, and oxygen consumption during barbiturate therapy in severe traumatic brain lesions. J Neurosurg 68: 424–431

    Article  PubMed  Google Scholar 

  5. Schalén W, Messeter K, Nordström CH (1991) Cerebral vasoreactivity and the prediction of outcome in severe traumatic brain lesions. Acta Anaesthesiol Scand 35: 113–122

    Article  PubMed  Google Scholar 

  6. Shiogai T, Sato E, Fujii Y, Takeuchi K, Saito I (1993) Continuous monitoring of transcranial Doppler, jugular venous oxygen saturation, and quantitative EEG in severe head injury. In: Nakamura N, Hashimoto T, Yasue M (eds) Recent advances in neurotraumatology. Springer, Berlin Heidelberg New York Tokyo, pp 297–300

    Chapter  Google Scholar 

  7. Kety SS, Schmidt CF (1946) The effects of active and passive hyperventilation on cerebral blood flow, cerebral oxygen consumption, cardiac output, and blood pressure of normal young men. J Clin Invest 25: 107–119

    Article  Google Scholar 

  8. Pierce EC, Lambertsen CJ, Deutsch S, Chase PE, Linde HW, Dripps RD, Price HL (1962) Cerebral circulation and metabolism during thiopental anesthesia and hyperventilation in man. J Clin Invest 41: 1664–1671

    Article  PubMed  CAS  Google Scholar 

  9. Pfenninger EG, Reith A, Breitig D, Grünert A, Ahnefeld FW (1989) Early changes of intracranial pressure, perfusion pressure, and blood flow after acute head injury: Part 1. An experimental study of the underlying pathophysiology. J Neurosurg 70: 774–779

    Article  PubMed  CAS  Google Scholar 

  10. Beasley MG, Blau JN, Gosling RG (1979) Changes in internal carotid artery flow velocities with cerebral vasodilation and constriction. Stroke 10: 331–335

    Article  PubMed  CAS  Google Scholar 

  11. Nelson RJ, Czosnyka M, Pickard JD, Maksymowics W, Perry S, Martin JL, Lovick AHJ (1992). Experimental aspects of cerebrospinal hemodynamics: the relationship between blood flow velocity waveform and cerebral autoregulation. Neurosurgery 31: 705–710

    Article  PubMed  CAS  Google Scholar 

  12. Chan KH, Miller JD, Dearden NM, Andrews PJD, Midgley S (1992) The effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation after severe brain injury. J Neurosurg 77: 55–61

    Article  PubMed  CAS  Google Scholar 

  13. Slug I (1984) Quantitative EEG as a measure of brain dysfunction. In: Pfurtscheller G, Jonkman EJ, Lopes da Silva FH (eds) Brain ischemia: quantitative EEG and imaging techniques. Progress in brain research, vol 62. Elsevier, Amsterdam, pp 65–84

    Chapter  Google Scholar 

  14. Gotoh F, Meyer JS (1965) Cerebral effects of hyperventilation in man. Arch Neurol 12: 410–423

    Article  PubMed  CAS  Google Scholar 

  15. Alexander SC, Cohen PJ, Wollman H, Smith TC, Reivich M, Molen RAV (1965) Cerebral carbohydrate metabolism during hypocarbia in man: studies during nitrous oxide anesthesia. Anesthesiology 26: 624–632

    Article  PubMed  CAS  Google Scholar 

  16. Alexander SC, Smith TC, Strobel G, Stephen GW, Wollman H (1968) Cerebral carbohydrate metabolism of man during respiratory and metabolic alkalosis. J Appl Physiol 24: 66–72

    PubMed  CAS  Google Scholar 

  17. Michenfelder JD, Sundt TM (1973) The effect of PaCO2 on the metabolism of ischemic brain in squirrel monkeys. Anesthesiology 38: 445–453

    Article  PubMed  CAS  Google Scholar 

  18. Obrist WD, Lagfitt TW, Jaggi JL, Cruz J, Gennarelli TA (1984) Cerebral blood flow and metabolism in comatose patients with acute head injury. J Neurosurg 61: 241–253

    Article  PubMed  CAS  Google Scholar 

  19. Robertson C (1993) Desaturation episodes after severe head injury: influence on outcome. Acta Neurochir 59(Suppl): 98–101

    CAS  Google Scholar 

  20. Steiger H-J, Aaslid R, Stoos R, Seiler RW (1994) Transcranial Doppler monitoring in head injury: relations between type of injury, flow velocities, vasoreactivity, and outcome. Neurosurgery 34: 79–86

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Tokyo

About this paper

Cite this paper

Shiogai, T., Noguchi, A., Sato, E., Saito, I. (1995). Multimodal Evaluation of Cerebral Oxygen Metabolism Disturbances in Patients with Severe Head Injury: Special Reference to Cerebrovascular CO2 Reactivity. In: Tsubokawa, T., Marmarou, A., Robertson, C., Teasdale, G. (eds) Neurochemical Monitoring in the Intensive Care Unit. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68522-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68522-7_21

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68524-1

  • Online ISBN: 978-4-431-68522-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics