Skip to main content

Gene Delivery to Chondrocytes Using Adenovirus Vector

  • Conference paper
Book cover Advances in Osteoarthritis

Summary

The objective of this study was to investigate the effects of adenovirus vector (Ax-)mediated gene transduction of E. coli β-galactosidase (LacZ) and transforming growth factor-β1 (TGF-β1) into a human chondrocyte-like cell line (HCS-2/8). The expression of transduced genes and their expression periods were examined by 5-bromo-4-chloroindolyl-β-D-galactoside (X-gal) staining, Northern blotting, ELISA, and Western blotting. To assess the influence of TGF-β1 gene transduction, the expression of mRNAs of type II collagen, proteoglycan core protein, matrix metalloproteinase-3 (MMP-3), and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) were examined by Northern blotting. Staining with X-gal indicated that the genes were transduced into 99% of the cells. Expression of the transduced genes in the cells was continued for at least 21 days. Transduction of the TGF-β1 gene enhanced mRNA expressions of type II collagen and proteoglycan core protein, but suppressed MMP-3 mRNA expression in the cells. These results indicate Ax is useful in chondrocyte gene therapy, and it could be an efficient mediator of TGF-β1 gene transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaese RM (1990) The ADA human gene therapy clinical protocol. Hum Gene Ther 1:327–362

    Article  Google Scholar 

  2. Rosenberg SA (1992) Gene therapy for cancer (clinical conference). JAMA 268:2416–2419

    Article  PubMed  CAS  Google Scholar 

  3. Roemer K, Friedmann T (1992) Concepts and strategies for human gene therapy. Eur J Biochem 208:211–225

    Article  PubMed  CAS  Google Scholar 

  4. Graham FL, Ludvik P (1991) Manipulation of adenovirus vectors. In: Murray EJ, Walker JM (eds) Methods in molecular biology, vol 7. Gene transfer and expression protocols. Humana, Clifton, NJ, pp 109–127

    Chapter  Google Scholar 

  5. Kozarsky KF, Wilson JM (1993) Gene therapy: adenovirus vectors. Curr Opin Genet Dev 3:499–503

    Google Scholar 

  6. Kehrl JH, Wakefield LM, Roberts AB, et al (1986) Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med 163:1037–1050

    Article  PubMed  CAS  Google Scholar 

  7. Espevik T, Figari IS, Shalaby MR, et al (1987) Inhibition of cytokine production by cyclosporin A and transforming growth factor beta. J Exp Med 166:571–576

    Article  PubMed  CAS  Google Scholar 

  8. Mule JJ, Schwarz SL, Roberts AB, Sporn MB, Rosenberg SA (1988) Transforming growth factor-beta inhibits the in vitro generation of lymphokine-activated killer cells and cytotoxic T cells. Cancer Immunol Immunother 26:95–100

    PubMed  CAS  Google Scholar 

  9. Morales TI, Roberts AB (1988) Transforming growth factor-β regulates the metabolism of proteoglycans in bovine cartilage organ cultures. J Biol Chem 263:12828–12831

    PubMed  CAS  Google Scholar 

  10. Redini F, Galera P, Mauviel A, et al (1988) Transforming growth factor-β stimulates collagen and glycosaminoglycan biosynthesis in cultured rabbit articular chondrocytes. FEBS Lett 234:172–176

    Article  PubMed  CAS  Google Scholar 

  11. Takigawa M, Tajima K, Pan H-O, et al (1989) Establishment of a clonal human chondrosarcoma cell line with cartilage phenotypes. Cancer Res 49:3996–4002

    PubMed  CAS  Google Scholar 

  12. Enomoto MI, Takigawa M (1992) Regulation of tumor-derived and immortalized chondrocytes. In: Adolphe M (ed) Biological regulation of the chondrocytes. CRC Press, Boca Raton, pp 321–328

    Google Scholar 

  13. Zhu JD, Pan HO, Suzuki F, Takigawa M (1994) Proto-oncogene expression in a human chondrosarcoma cell line: HCS-2/8. Jpn J Cancer Res 85:364–371

    Article  PubMed  CAS  Google Scholar 

  14. Kanegae Y, Gwang L, Sato Y, et al (1995) Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase. Nucl Acids Res 23:3816–3821

    Article  PubMed  CAS  Google Scholar 

  15. Miyake S, Makimura M, Kanegae Y, et al (1996) Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome. Proc Natl Acad Sci USA 93:1320–1324

    Article  PubMed  CAS  Google Scholar 

  16. Takebe Y, Seiki M, Fujisawa J, et al (1988) SRa Promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol 8:466–472

    PubMed  CAS  Google Scholar 

  17. Kanegae Y, Makimura M, Saito I (1994) A simple and efficient method for purification of infectious recombinant adenovirus. Jpn J Med Sci Biol 47:157–166

    PubMed  CAS  Google Scholar 

  18. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  19. Kobayashi K, Ohgitani E, Tanaka Y, Kita M, Imanishi J (1994) Herpes simplex virus-induced expression of 70 kD heat shock protein (HSP70) requires early protein synthesis but not viral DNA replication. Microbiol Immunol 38:321–325

    PubMed  CAS  Google Scholar 

  20. Chomczynski P, Sacchi N (1987) Single-step method of isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  21. Su MW, Lee B, Ramirez F, Machado M, Horton W (1989) Nucleotide sequence of the full length cDNA encoding for human type II procollagen. Nucl Acids Res 17:9473

    Article  PubMed  CAS  Google Scholar 

  22. Doege KJ, Sasaki M, Kimura T, Yamada Y (1991) Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan: human-specific repeats, and additional alternatively spliced forms. J Biol Chem 266:894–902

    PubMed  CAS  Google Scholar 

  23. Whitham SE, Murphy G, Angel P, et al (1986) Comparison of human stromelysin and collagenase by cloning and sequence analysis. Biochem J 240:913–916

    PubMed  CAS  Google Scholar 

  24. Onisto M, Garbisa S, Caenazzo C, et al (1993) Reverse transcription-polymerase chain reaction phenotyping of metalloproteinases and inhibitors involved in tumor matrix invasion. Diagn Mol Pathol 2:74–80

    PubMed  CAS  Google Scholar 

  25. Anderson WF (1992) Human gene therapy. Science 256:808–813

    Article  PubMed  CAS  Google Scholar 

  26. Bandara G, Robbins PD, Georgescu HI, Mueller GM, Glorioso JC, Evans CH (1992) Gene transfer to synoviocytes. DNA Cell Biol 11:227–231

    Article  PubMed  CAS  Google Scholar 

  27. Roessler BJ, Allen ED, Wilson JM, Hartman JW, Davidson BL (1993) Adenoviral-mediated gene transfer to rabbit synovium in vivo. J Clin Invest 92:1085–1092

    Article  PubMed  CAS  Google Scholar 

  28. Makarov SS, Olsen JC, Johnston WN, et al (1995) Retrovirus mediated in vivo synovium in bacterial cell wall-induced arthritis in rats. Gene Ther 2:424–428

    PubMed  CAS  Google Scholar 

  29. Bandara G, Mueller GM, Galea-Lauri J, et al (1993) Intraarticular expression of biologically active interleukin 1-receptor-antagonist protein by ex vivo gene transfer. Proc Natl Acad Sci USA 90:10764–10768

    Article  PubMed  CAS  Google Scholar 

  30. Roessler BJ, Hartman JW, Vallance DK, Latta JM, Janich SL, Davidson BL (1995) Inhibition of interleukin-1-induced effects in synoviocytes transduced with the human IL-1 receptor antagonist cDNA using an adenoviral vector. Hum Gene Ther 6:307–316

    Article  PubMed  CAS  Google Scholar 

  31. Makarov SS, Olsen JC, Johnston WN, et al (1996) Suppression of experimental arthritis by gene transfer of interleukin 1 receptor antagonist cDNA. Proc Natl Acad Sci USA 93:402–406

    Article  PubMed  CAS  Google Scholar 

  32. Hung GL, Galea-Lauri J, Mueller GM, et al (1994) Suppression of intra-articular response to interleukin-1 receptor antagonist gene to synovium. Gene Ther 1:64–69

    PubMed  CAS  Google Scholar 

  33. Miller AD (1992) Human gene therapy comes of age. Nature (Lond) 357:455–460

    Article  CAS  Google Scholar 

  34. Rosenfeld MA, Yoshimura K, Trapnell BC, et al (1992) In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68:143–155

    Article  PubMed  CAS  Google Scholar 

  35. Glorioso JC, DeLuca NA, Goins WF, Fink DJ (1994) Development of herpes simlpex virus vectors for gene transfer to the central nervous system. In: Wolff JA (ed) Gene therapeutics. Methods and applications of direct gene transfer. Birkhauser, Boston, pp 281–302

    Google Scholar 

  36. Kotin RM (1994) Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther 5:793–801

    Article  PubMed  CAS  Google Scholar 

  37. Singhal A, Huang L (1994) Gene transfer in mammalians cells using liposomes as carriers. In: Wolff JA (ed) Gene therapeutics. Methods and applications of direct gene transfer. Birkhauser, Boston, pp 118–142

    Google Scholar 

  38. Le Gal La Salle G, Robert JJ, Berrard S, et al (1993) An adenovirus vector for gene transfer into neurons and glia in the brain. Science 259:988–990

    Article  Google Scholar 

  39. Ragot T, Vincent N, Chafiy P, et al (1993) Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature (Lond) 361:647–650

    Article  CAS  Google Scholar 

  40. Morsy MA, Alford EL, Bett A, Graham FL, Caskey CC (1993) Efficient adenoviral-mediated Ornithin transcarbamylase expression in deficient mouse and human hepatocytes. J Clin Invest 92:1580–1586

    Article  PubMed  CAS  Google Scholar 

  41. Van Beuningen HM, Van der Kraan PM, Arntz OJ, Van den Berg WB (1994) Transforming growth factor-β1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab Invest 71:279–290

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Tokyo

About this paper

Cite this paper

Kubo, T., Arai, Y., Kobayashi, K., Imanishi, J., Takigawa, M., Hirasawa, Y. (1999). Gene Delivery to Chondrocytes Using Adenovirus Vector. In: Tanaka, S., Hamanishi, C. (eds) Advances in Osteoarthritis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68497-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68497-8_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68499-2

  • Online ISBN: 978-4-431-68497-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics