Physical Diagnostics of Cartilage Degeneration

  • Steven Treppo
  • Scott I. Berkenblit
  • David L. Bombard
  • Eliot H. Frank
  • Alan J. Grodzinsky
Conference paper


We have focused on a new technology for nondestructive measurement of electrical and mechanical properties of articular cartilage via electrodes placed on the tissue surface. The long-term goal of this research is to enable detection of early stages of cartilage degradation based on the sensitivity of cartilage electromechanical properties to damage of the aggrecan-collagen network and loss of the highly charged aggrecan molecules. Ultimately, this technique may find application in early in vivo detection of cartilage degradation via arthroscopy. Experimental and theoretical results [1,2] have shown that an electric current applied to the articular surface of cartilage will produce a current-generated mechanical stress within the bulk of the tissue, via electrokinetic mechanisms, measurable at the surface. Based on this principle, a surface probe has been developed containing electrodes for applying current to the cartilage surface and an overlying piezoelectric sensor for measuring the resulting stress. Small sinusoidal currents applied to cartilage produce sinusoidal surface stresses at the same frequency. Such responses have been observed using disks of bovine articular cartilage, cartilage on intact bovine knee joint surfaces, and, recently, in preliminary in vivo studies in a canine knee joint model. The frequency response of the current-generated stress was found to agree well with trends predicted by poroelastic theory [1]. Because the depth to which current penetrates into the tissue is proportional to the imposed spatial wavelength (twice the electrode spacing), we have developed a multiple wavelength probe to test the possibility that measurement using multiple wavelengths and frequencies could be used to image depth-dependent partial thickness degradation, as occurs in early osteoarthritis.


Articular Cartilage Surface Probe Cartilage Degeneration Cartilage Degradation Spatial Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sachs JR, Grodzinsky AJ (1989) An electromechanically coupled poroelastic medium driven by an applied electric current: surface detection of bulk material properties. Phys-Chem Hydrodyn 11:585–614Google Scholar
  2. 2.
    Berkenblit SI, Frank EH, Salant EP, Grodzinsky AJ (1994) Nondestructive detection of cartilage degeneration using electromechanical surface spectroscopy. J Biomech Eng 116:384–392PubMedCrossRefGoogle Scholar
  3. 3.
    Moskowitz RW, Howell DS, Goldberg VM, Mankin HJ (eds) (1992) Osteoarthritis: diagnosis and medical/surgical management, 2nd edn. Saunders, PhiladelphiaGoogle Scholar
  4. 4.
    Hall LD, Watson PJ, Tyler JA (1997) Magnetic resonance imaging and the progression of osteoarthritis, osteoporosis and aging. In: Osteoarthritis: public health implications for an aging population. Johns Hopkins University Press, BaltimoreGoogle Scholar
  5. 5.
    Dieppe P (1995) The classification and diagnosis of osteoarthritis. In: Osteoar-thritic disorders. American Academy of Orthopaedic Surgeons, Rosemont, ILGoogle Scholar
  6. 6.
    Bashir A, Paley D, Davidson SA, Gray ML, Burstein D (1997) Mri measurements of fixed charge density as a measure of cartilage proteoglycan content. In: Transactions of the 43rd annual meeting, vol 22. Orthopaedic Research Society, San Francisco, CA, p 217Google Scholar
  7. 7.
    Mink JH, Reicher MA, Crues JV III (1992) Magnetic resonance imaging of the knee. Raven, New YorkGoogle Scholar
  8. 8.
    Ewing JW (1990) Articular cartilage and knee joint function: basic science and arthroscopy. Raven, New YorkGoogle Scholar
  9. 9.
    Lohmander S (1993) Osteoarthritis: a major cause of disability of the elderly. In: Musculoskeletal soft-tissue aging: impact on mobility. American Academy of Orthopaedic Surgeons, Rosemont, ILGoogle Scholar
  10. 10.
    Sabiston CP, Adams ME, Li DKB (1987) Magnetic resonance imaging of osteoarthritis: correlation with gross pathology using an experimental model. J Orthop Res 5:164–172PubMedCrossRefGoogle Scholar
  11. 11.
    Hamerman D (1997) Osteoarthritis: public health implications for an aging population. Johns Hopkins University Press, BaltimoreGoogle Scholar
  12. 12.
    Cawston T (1993) Blocking cartilage destruction with metalloproteinase inhibitors: a valid therapeutic target? Ann Rheum Dis 52:769–770PubMedCrossRefGoogle Scholar
  13. 13.
    Kuettner KE, Goldberg VM (1995) Osteoarthritic disorders. American Academy of Orthopaedic Surgeons, Rosemont, ILGoogle Scholar
  14. 14.
    Hoch DH, Grodzinsky AJ, Koob TJ, Albert ML, Eyre DR (1983) Early changes in material properties of rabbit articular cartilage after meniscectomy. J Orthop Res 1:4–12PubMedCrossRefGoogle Scholar
  15. 15.
    Frank EH, Grodzinsky AJ, Eyre DR, Koob TJ (1987) Streaming potential: a sensitive index of enzymatic degradation in articular cartilage. J Orthop Res 5:497–508PubMedCrossRefGoogle Scholar
  16. 16.
    Frank EH, Grodzinsky AJ (1987) Cartilage electromechanics I: electrokinetic transduction and the effects of electrolyte pH and ionic strength. J Biomech 20:615–627PubMedCrossRefGoogle Scholar
  17. 17.
    Frank EH, Grodzinsky AJ (1987) Cartilage electromechanics II: a continuum model of cartilage electrokinetics. J Biomech 20:629–639PubMedCrossRefGoogle Scholar
  18. 18.
    Bonasser LJ, Sandy JD, Lark MW, Plaas AHK, Frank EH, Grodzinsky AJ (1997) Inhibition of cartilage degradation and changes in physical properties induced by IL-1β and retinoic acid using matrix metalloproteinases. Arch Biochem Biophys 334:404–412CrossRefGoogle Scholar
  19. 19.
    Maroudas AI (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature (Lond) 260:808–809CrossRefGoogle Scholar
  20. 20.
    Maroudas A (1979) Physicochemical properties of articular cartilage. In: Adult articular cartilage. Pitman Medical, Kent, England, pp 215–290Google Scholar
  21. 21.
    Mow VC, Setton LA, Guilak F, Ratcliffe A (1995) Mechanical factors in articular cartilage and their role in osteoarthritis. In: Osteoarthritic disorders. American Academy of Orthopaedic Surgeons, Rosemont, ILGoogle Scholar
  22. 22.
    Tkaczuk H (1986) Human cartilage stiffness. In vivo studies. Clin Orthop 206:301–312Google Scholar
  23. 23.
    Dashefsky JH (1987) Arthroscopic measurement of chondromalacia of patella cartilage using a microminiature pressure transducer. Arthroscopy 3:80–85PubMedCrossRefGoogle Scholar
  24. 24.
    Lyyra T, Jurvelin J, Pitkanen P, Väätäinen U, Kiviranta I (1995) Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med Eng Phys 17:395–399PubMedCrossRefGoogle Scholar
  25. 25.
    Kiviranta I, Lyyra T, Väätäinen U, Seuri R, Jeroma H, Tammi M, Jurvelin J (1995) Knee joint articular cartilage shows general softening in patients with chondromalacia of patella. In: Transactions of the 41st annual meeting, vol 20. Orthopaedi Research Society, Orlando, FL, p 197Google Scholar
  26. 26.
    Chang RW, Falconer J, Stulberg SD, Arnold WJ, Manheim LM, Dyer AR (1993) A randomized, controlled trial of arthroscopic surgery versus closed-needle joint lavage for patients with osteoarthritis of the knee. Arthritis Rheum 36:289–296PubMedCrossRefGoogle Scholar
  27. 27.
    Bonassar LJ, Frank EH, Murray JC, Paguio CG, Moore VL, Lark MW, Sandy JD, Wu JJ, Eyre DR, Grodzinsky AJ (1995) Changes in cartilage composition and physical properties due to stromelysin degradation. Arthritis Rheum 38:173–183PubMedCrossRefGoogle Scholar
  28. 28.
    Sachs JR, Grodzinsky AJ (1994) Theory of electromechanical spectroscopy in poroelastic media: surface detection of bulk properties. In: Transactions of the 16th International Conference, IEEE Engineering in Medicine and Biology Society, Baltimore, MD, pp 752–753Google Scholar
  29. 29.
    Grodzinsky AJ (1983) Electromechanical and physicochemical properties of connective tissues. CRC Crit Rev Biomed Eng 9:133–199Google Scholar
  30. 30.
    Grimshaw PE, Eisenberg SR, Grodzinsky AJ, Koob TJ, Eyre DR (1983) The kinetics of in vitro neutralization and enzymatic extraction of cartilage charge groups: characterization by isometric compressive stress. In: Transactions of the 29th Annual Meeting, vol 8. Orthopaedic Research Society, Anaheim, CA, p 122Google Scholar
  31. 31.
    Frank EH, Grodzinsky AJ, Philips SL, Grimshaw PE (1990) Physiochemical and bioelectric determinants of cartilage material properties. In: Biomechanics of diarthrodial joints. Springer, Heidelberg Berlin New York, p 147Google Scholar
  32. 32.
    Treppo S, Otterness IG, Malici AJ, Berkenblit SI, Grodzinsky AJ (1998) Effects of Mmp-1 and Mmp-13 induced matrix degradation on electrokinetic and dielectric properties of adult articular cartilage by surface spectroscopy. In: Transactions of the 45th Annual Meeting, vol 23. Orthopaedic Research Society, New Orleans, LA, p 153Google Scholar

Copyright information

© Springer-Verlag Tokyo 1999

Authors and Affiliations

  • Steven Treppo
    • 1
    • 2
  • Scott I. Berkenblit
    • 1
    • 2
  • David L. Bombard
    • 1
  • Eliot H. Frank
    • 1
  • Alan J. Grodzinsky
    • 1
    • 2
  1. 1.Continuum Electromechanics Group, Center for Biomedical Engineering, Department of Electrical Engineering and Computer ScienceMasschusetts Institute of TechnologyCambridgeUSA
  2. 2.Harvard-M.I.T. Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations