Skip to main content

Extracellular Ions and Hydrostatic Pressure: Their Influence on Chondrocyte Intracellular Ionic Composition

  • Conference paper
Advances in Osteoarthritis

Summary

The maintenance of a constant intracellular ionic environment is vital for cell viability and its proper function. To this end, cells possess an elaborate set of membrane proteins that transport ions across the plasma membrane. Intracellular ionic composition is determined by the activity of these transporters and by the extracellular ionic environment. The matrix in which chondrocytes are embedded is highly unusual when compared with the surroundings of other mammalian cells. In addition, the physical environment of the chondrocytes is routinely altered by load. By altering ionic gradients and transporter activity, load-induced changes to the matrix have knock-on effects on intracellular composition. This has important consequences for intracellular reactions such as macromolecule synthesis and hence matrix integrity. The carrier proteins present in chondrocytes to regulate cell composition therefore have a vital role to play in maintaining matrix integrity. We consider the specific challenges presented by the physical environment of chondrocytes and the ways in which these cells respond to them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stein WD (1986) Transport and diffusion across cell membranes. Academic Press, London

    Google Scholar 

  2. Pedersen PI, Carafoli E (1987) Ion motive ATPases. 1. Ubiquity, properties, and significance to cell function. Trends Biol Sci 12:146–150

    Article  CAS  Google Scholar 

  3. Hebert DN, Carruthers A (1991) Uniporters and anion antiporters. Curr Opin Cell Biol 3:702–709

    Article  PubMed  CAS  Google Scholar 

  4. Hoffman EK, Simonsen LO (1989) Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev 69:315–382

    Google Scholar 

  5. McCarty NA, O’Neil RG (1992) Calcium signaling in cell volume regulation. Physiol Rev 72:1037–1061

    PubMed  CAS  Google Scholar 

  6. Ellory JC, Hall AC (1988) Human red cell volume regulation in hypotonic media. Comp Biochem Physiol 90A:533–537

    Article  CAS  Google Scholar 

  7. Jackson PS, Strange K (1993) Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am J Physiol 265:C1489-C1500

    PubMed  CAS  Google Scholar 

  8. Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433

    Article  PubMed  CAS  Google Scholar 

  9. Yamada KM, Miyamoto S (1995) Integrin transmembrane signaling and cytoskeletal control. Curr Opm Cell Biol 7:681–689

    Article  CAS  Google Scholar 

  10. Hildebrand A, Romaris M, Rasmussen LM, et al (1994) Interaction of small interstitial proteoglycans biglycan, decorin and fibromoduhn with transforming growth factors beta. Biochem J 302:527–534

    PubMed  CAS  Google Scholar 

  11. Maroudas A (1979) Physico-chemical properties of articular cartilage. In: Freeman M (ed) Adult articular cartilage. Pitman, London, pp 215–290

    Google Scholar 

  12. Maroudas A, Evans H (1974) A study of ionic equilibria in cartilage. Connect Tissue Res 1:69–79

    Article  Google Scholar 

  13. Urban JPG, Hall AC, Gehl KA (1993) Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes. J Cell Physiol 154:262–270

    Article  PubMed  CAS  Google Scholar 

  14. Lee RB, Urban JPG (1997) Evidence for a negative Pasteur effect in articular cartilage. Biochem J 321:95–102

    PubMed  CAS  Google Scholar 

  15. Diamant B, Karlsson J, Nachemson A (1968) Correlation between lactate levels and pH in discs of patients with lumbar rhizopathies. Experientia (Basel) 24:1195–1196

    Article  CAS  Google Scholar 

  16. Weightman B, Kempson G (1979) Cartilage load carriage. In: Freeman MAR (ed) Adult articular cartilage. Pitman, London, pp 293–341

    Google Scholar 

  17. Hodge WA, Fuan RS, Carlson KL, Burgess RG, Harris WH, Mann RW (1986) Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci USA 83:2879–2883

    Article  PubMed  CAS  Google Scholar 

  18. Helminen H, Jurvelin J, Kiviranta I, Paukkonen K, Saamanen A-M, Tammi M (1987) Joint loading effects on articular cartilage: a historical review. In: Helminen HJ, Kiviranta I, Tammi M, Saamanen A-M, Paukkonen K, Jurvelin J (eds) Joint loading: biology and health of articular structures. Wright, Bristol, pp 1–46

    Google Scholar 

  19. Arokoski J, Kiviranta I, Jurvelin J, Tammi M, Helminen HJ (1993) Long-distance running causes site-dependent decrease of cartilage glycosaminoglycan content in the knee joints of beagle dogs. Arthritis Rheum 36:1451–1459

    Article  PubMed  CAS  Google Scholar 

  20. Burton-Wurster N, Vernier-Singer M, Farquhar T, Lust G (1993) Effect of compressive loading and unloading on the synthesis of total protein, proteoglycan and fibronectin by canine cartilage expiants. J Orthop Res 11:717–729

    Article  PubMed  CAS  Google Scholar 

  21. Sah R, Grodzinsky A, Plaas A, Sandy J (1992) Effects of static and dynamic compression on matrix metabolism in cartilage expiants. In: Kuettner K, Shleyerbach R, Reyron J, Hascall V (eds) Articular cartilage and osteoarthritis. Raven Press, New York, pp 373–392

    Google Scholar 

  22. Kim Y-J, Bonasser LJ, Grodzinsky AJ (1995) The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression. J Biomech 28:1055–1066

    Article  PubMed  CAS  Google Scholar 

  23. Wright M, Jobanputra P, Bavinton C, Salter DM, Nuki G (1996) Effects of intermittent pressure-induced strain on the electrophysiology of cultured human chondrocytes: evidence for the presence of stretch-activated membrane channels. Clin Sci (Colch) 90:61–71

    CAS  Google Scholar 

  24. Handa T, Ishihara H, Ohshima H, Osada R, Tsuji H, Obata K (1997) Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine 22:1085–1091

    Article  PubMed  CAS  Google Scholar 

  25. Takahashi K, Kubo T, Arai Y, et al (1997) High hydrostatic pressure induces 11–6 and tumor necrosis factor (TNF-α) mRNA in chondrocytes. Trans Orthop Res Soc 22:714

    Google Scholar 

  26. Smith RL, Donion BS, Gupta MK, et al (1995) Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J Orthop Res 13:824–831

    Article  PubMed  CAS  Google Scholar 

  27. Jones IL, Klamfeldt A, Sandstrom T (1982) The effect of continuous mechanical pressure upon the turnover of articular cartilage proteoglycans in vitro. Clin Orthop 165:283–289

    PubMed  CAS  Google Scholar 

  28. Boustany N, Gray ML, Black A, Chunziker EB (1995) Time-dependent changes in the response of cartilage to static compression suggest interstitial pH is not the only signaling mechanism. J Orthop Res 13:740–750

    Article  PubMed  CAS  Google Scholar 

  29. Guilak F, Donahue HJ, Zeil R, Grande DA, McLeod RJ, Rubin CT (1994) Deformation induced calcium signaling in articular chondrocytes. In: Mow VC, Guilak F, Transon-Tay R, Hochmuth RM (eds) Cell mechanics and cellular engineering. Berlin Heidelberg Springer, New York, pp 380–397

    Chapter  Google Scholar 

  30. Ishihara H, Warensjo K, Roberts S, Urban JPG (1997) Proteoglycan synthesis in the intervertebral disk nucleus: the role of extracellular osmolality. Am J Physiol 272:C1499-C1506

    PubMed  CAS  Google Scholar 

  31. Urban JPG, Bayliss MT (1989) Regulation of proteoglycan synthesis rate in cartilage in vitro: influence of extracellular ionic composition. Biochim Biophys Acta 992:59–65

    Article  PubMed  CAS  Google Scholar 

  32. Schneiderman R, Keret D, Maroudas A (1986) Effects of mechanical and osmotic pressure on the rate of glycosaminoglycan synthesis in the human adult femoral head. J Orthop Res 4:393–408

    Article  PubMed  CAS  Google Scholar 

  33. Ohshima H, Urban JPG (1992) The effect of lactate and pH on proteoglycan and protein synthesis rates in the intervertebral disc. Spine 17:1079–1082

    Article  PubMed  CAS  Google Scholar 

  34. Wilkins RJ, Hall AC (1995) Control of matrix synthesis in isolated bovine chondrocytes by extracellular and intracellular pH. J Cell Physiol 164:474–481

    Article  PubMed  CAS  Google Scholar 

  35. Aydelotte MB, Mok SS, Michai L, Schumacher BL (1993) Influence of changes in environmental osmotic pressure on synthesis and accumulation of proteoglycans in matrix assembled by cultured articular chondrocytes. Trans Am Orthop Res Soc 18:14

    Google Scholar 

  36. Urban JPG, Borghetti P, Hall AC, Deshayes C (1994) Volume regulatory behaviour of isolated and in situ chondrocytes in respone to changes in extracellular osmolarity. Trans Am Orthop Res Soc 19:490

    Google Scholar 

  37. Hall AC, Starks I, Shoults CL, Rashidbigi S (1996) Pathways for K+ transport across the bovine articular chondrocyte membrane and their sensitivity to cell volume. Am J Physiol 270:C1300-C1310

    PubMed  CAS  Google Scholar 

  38. Wong M, Wuethrich P, Buschmann MD, Eggli P, Hunziker E (1996) Chondrocyte biosynthesis correlates with local tissue strain in statically compressed adult articular cartilage. J Orthop Res 15:189–196

    Article  Google Scholar 

  39. Horisberger J-D, Lemas V, Kraehenbuhl J-P, Rossier BC (1991) Structure-function relationship of Na,K-ATPase. Annu Rev Physiol 53:565–584

    Article  PubMed  CAS  Google Scholar 

  40. Wilkins RJ, Browning JA, Yamakazi N, Hall AC (1997) Hydrostatic pressure stimulates intracellular pH recovery from acidosis in bovine articular chondrocytes. Trans Orthop Res Soc 22:713

    Google Scholar 

  41. Descalu A, Korenstein R, Oron Y, Nevo Z (1996) A hyperosmotic stimulus regulates intracellular pH, calcium and S-100 protein levels in avian chondrocytes. Biochem Biophys Res Commun 227:368–373

    Article  Google Scholar 

  42. Hall AC, Horowitz ER, Wilkins RJ (1996) The cellular physiology of articular cartilage. Exp Physiol 81:535–545

    PubMed  CAS  Google Scholar 

  43. Descalu A, Nevo Z, Korenstein R (1993) The control of intracellular pH in cultured avian chondrocytes. J Physiol (Lond) 461:583–599

    Google Scholar 

  44. Ponte MR, Hall AC (1994) The effect of extracellular Ca2+ and Na+ on [Ca2+]i of porcine articular chondrocytes. J Physiol (Lond) 475P:105

    Google Scholar 

  45. Higgins C, Cairney J, Stirling D, Sutherland L, Booth I (1987) Osmotic regulation of gene expression: ionic strength as an intracellular signal? Trends Biol Sci 12:339–344

    Article  CAS  Google Scholar 

  46. Mobasheri A, Hall AC, Urban JP, France SJ, Smith AL (1997) Immunologic and autoradiographic localisation of the Na+, K(+)-ATPase in articular cartilage: upregulation in response to changes in extracellular Na+ concentration. Int J Biochem Cell Biol 29:649–657

    Article  PubMed  CAS  Google Scholar 

  47. Burg MB, Kwon ED, Kultz D (1996) Osmotic regulation of gene expression. FASEB J 10:1598–1606

    PubMed  CAS  Google Scholar 

  48. Urban JPG, Hall AC (1993) Adaptive response of chondrocytes to changes in their physical environment. Trans Am Orthop Res Soc 18:650

    Google Scholar 

  49. Hall AC, Urban JPG, Gehl KA (1991) The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J Orthop Res 9:1–10

    Article  PubMed  CAS  Google Scholar 

  50. Parkkinen JJ, Ikonen J, Lammi MJ, Laakonen J, Helminen HJ (1993) Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch Biochem Biophys 300:458–465

    Article  PubMed  CAS  Google Scholar 

  51. Lipiello L, Kaye C, Neumata T, Mankin HJ (1985) In vitro metabolic response of articular cartilage segments to low levels of hydrostatic pressure. Connect Tissue Res 13:99–107

    Article  Google Scholar 

  52. Hall AC (1997) Hydrostatic pressure directly affects the activity of articular chondrocyte membrane transporters. Trans Orthop Res Soc 22:177

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Tokyo

About this paper

Cite this paper

Urban, J.P.G., Wilkins, R.J. (1999). Extracellular Ions and Hydrostatic Pressure: Their Influence on Chondrocyte Intracellular Ionic Composition. In: Tanaka, S., Hamanishi, C. (eds) Advances in Osteoarthritis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68497-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68497-8_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68499-2

  • Online ISBN: 978-4-431-68497-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics