Skip to main content

Participation of Cytoskeletal Elements in Neuronal Signal Transduction: New Insight into the Molecular Basis of Antidepressant Action

  • Conference paper
Signal Transduction in Affective Disorders

Abstract

Antidepressant drugs have been used clinically not only for depression but also for other psychiatric disorders. Despite extensive studies, the mechanisms of action of antidepressant drugs have not been clearly established. The classic monoamine hypothesis of depression suggests that depressive disorders are associated with subnormal monoamine release at certain synapses of the CNS. Antidepressant drugs are supposed to increase the availability of noradrenaline and serotonin, either by inhibiting amine reuptake or by blocking monoamine oxidase in presynaptic nerve terminals, and facilitate monoamine transmission (Schildkraut 1965). However, an acute effect of antidepressants on neurotransmission is inconsistent with the delayed onset of clinical efficacy of these drugs (Zemlan and Garver 1990). Furthermore, neuroleptic drugs such as amphetamine and cocaine that block reuptake or catabolism of monoamines do not have an antidepressant effect. Thus, an acute neurochemical effect of antidepressant drugs may not account for the mechanism of action of these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amir-Zaltsman Y, Ezra E, Scherson T, Zutra A, Littauer UZ, Salomon Y (1982) ADP- ribosylation of microtubule proteins as catalyzed by cholera toxin. EMBO J 1: 181–186

    PubMed  CAS  Google Scholar 

  • Bhattacharyya B, Sackett DL, Wolff J (1985) Tubulin, hybrid dimers and tubulin S: stepwise charge reduction and polymerization. J Biol Chem 260: 10208–10216

    PubMed  CAS  Google Scholar 

  • Chen J, Rasenick MM (1995a) Chronic treatment of C6 glioma cells with antidepres¬sant drugs increases functional coupling between a G protein ( Gs) and adenylyl cyclase. J Neurochem 64: 724–732

    Google Scholar 

  • Chen J, Rasenick MM (1995b) Chronic antidepressant treatment facilitates G protein activation of adenylyl cyclase without altering G protein content. J Pharmacol Exp Ther 275: 509–517

    PubMed  CAS  Google Scholar 

  • Cowburn RF, Marcusson JO, Eriksson A, Wiehager B, ONeill C (1994) Adenylyl cyclase and G protein subunit levels in postmortem frontal cortex of suicide victims. Brain Res 633: 297–304

    Article  PubMed  CAS  Google Scholar 

  • De Montis GM, Devoto P, Gessa GL, Procella A, Serra G, Tagliamonte A (1990) Selective adenylate cyclase increase in the limbic area of long-term imipramine- treated rats. Eur J Pharamcol 180: 169–174

    Article  Google Scholar 

  • Hagmann J, Fishman PH (1980) Modulation of adenylate cyclase in intact macrophage by microtubules: opposing actions of colchicine and chemotactic factor. J Biol Chem 255: 2659–2662

    PubMed  CAS  Google Scholar 

  • Hatta S, Ameniya N, Ohshika H, Saito T, Ozawa H (1992) Tubulin modifies neuronal sinal transduction through the association with G-proteins in rat cerebral cortex and striatum. Soc Neurosci Abstr 18: 285

    Google Scholar 

  • Hatta S, Ozawa H, Saito T, Ohshika H (1994) Alteration of tubulin-Gi protein interac¬tion in rat cerebral cortex with aging. J Neurochem 63: 1104–1110

    Article  PubMed  CAS  Google Scholar 

  • Hatta S, Ozawa H, Saito T, Ohshika H (1995a) Participation of tubulin in the stimula¬tory regulation of adenylyl cyclase in rat cerebral cortex membranes. J Neurochem 64: 1343–1350

    Article  PubMed  CAS  Google Scholar 

  • Hatta S, Ozawa H, Saito T, Ameniya N, Ohshika H (1995b) Tubulin stimulates adenylyl cyclase activity in rat striatal membranes via transfer of guanine nucleotide to Gs protein. Brain Res 704: 23–30

    Article  PubMed  CAS  Google Scholar 

  • Jameson L, Caplow M (1981) Modification of microtubule steady-state dynamics by phosphorylation of the microtubule-associated proteins. Proc Natl Acad Sci USA 78: 3413–3417

    Article  PubMed  CAS  Google Scholar 

  • Jameson L, Frey T, Zeeberg B, Dalldorf F, Caplow M (1980) Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry 19: 2472–2479

    Article  PubMed  CAS  Google Scholar 

  • Kamada H, Ozawa H, Saito T, Hatta S, Takahata N (1997) Dimeric tubulin-stimulated adenylyl cyclase activity is augmented after long-term amitriptyline treatment. Life Sci 60: 57–66

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MS, Insel PA (1979) Inhibitors of microtubule assembly enhance beta- adrenergic and prostaglandin Erstimulated cyclic accumulation in S49 lymphoma cells. Mol Pharmacol 16: 215–223

    PubMed  CAS  Google Scholar 

  • Kim H, Jensen C, Rebhun L (1986) The binding of MAP-2 and tau on brain microtu¬bules in vitro: implications for microtubule structure. Ann NY Acad Sci 466: 218–239

    Article  PubMed  CAS  Google Scholar 

  • Lim L-K, Sekura RD, Kaslow HR (1985) Adenine nucleotides directly stimulate pertussis toxin. J Biol Chem 260: 2585–2588

    PubMed  CAS  Google Scholar 

  • Littauer U, Giveon D, Thierauf M, Ginsburg I, Postingl H (1985) Tubulin binding sites for microtubule associated proteins. In: De Brabander M, De Mey J (eds) Microtubules and microtubule inhibitors 1985. Elsevier Science Publishers B.V., Amsterdam, pp 171–176

    Google Scholar 

  • Maccioni R, Serrono L, Avila J (1985) Structural and functional domains of tubulin. BioEssays 4: 165–169

    Google Scholar 

  • Menkes DB, Rasenick MM, Wheeler MA, Bitensky NW (1983) Guanosine triphos-phate activation of brain adenylate cyclase: enhancement by long-term antidepres¬sant treatment. Science 219: 65–67

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Asakura M, Sasuga Y (1995) Effect of chronic administration of antide¬pressants on microtubule assembly in rat cerebral cortex. Jpn J Psychopharmacol 15:385–395 (abstract in English)

    Google Scholar 

  • Newman ME, Lerer B (1989) Post-mediated increases in adenylate cyclase activity after chronic antidepressant treatment: relationship to receptor desensitization. Eur J Pharmacol 162: 345–352

    Article  PubMed  CAS  Google Scholar 

  • Ozawa H, Rasenick MM (1989) Coupling of the stimulatory GTP-binding protein Gs to rat synaptic membrane adenylate cyclase is enhanced subsequent to chronic antidepressant treatment. Mol Pharmacol 36: 803–808

    PubMed  CAS  Google Scholar 

  • Ozawa H, Rasenick MM (1991) Chronic electroconvulsive treatment augments cou¬pling of the GTP-binding protein Gs to the catalytic moiety of adenylyl cyclase in a manner similar to that seen with chronic antidepressant drugs. J Neurochem 56: 330–338

    Article  PubMed  CAS  Google Scholar 

  • Ozawa H, Katamura Y, Hatta S, Amemiya N, Saito T, Ohshika H, Takahata N (1994) Antidepressants directly influence in situ binding of guanine nucleotide in synaptic membrane. Life Sci 54: 925–932

    Article  PubMed  CAS  Google Scholar 

  • Perez J, Tinelli D, Brunello N, Racagni G (1989) cAMP-dependent phosphorylation of soluble and crude microtubule fractions of rat cerebral cortex after prolonged desmethylimipramine treatment. Eur J Pharmacol Mol Pharmacol Sec 172: 305–316

    Google Scholar 

  • Popova JS, Garrison JC, Rhee SG, Rasenick MM (1997) Tubulin, Gq, and phos- phatidylinositol 4,5-bisphosphate interact to regulate phospholipase Cp! signaling. J Biol Chem 272: 6760–6765

    Article  PubMed  CAS  Google Scholar 

  • Rasenick MM, Wang N (1988) Exchange of guanine nucleotides between tubulin and GTP-binding proteins that regulate adenylate cyclase: cytoskeletal modification of neuronal signal transduction. J Neurchem 51: 300–311

    Article  CAS  Google Scholar 

  • Rasenick MM, Stein P, Bitensky MW (1981) The regulatory subunit of adenylate cyclase interacts with cytoskeletal components. Nature 294: 560–562

    Article  PubMed  CAS  Google Scholar 

  • Rasenick MM, O’Callahan CM, Moore CA, Kaplan RS (1985) GTP-binding proteins which regulate neuronal adenylate cyclase interact with microtubule proteins. In: De Brabander M, De Mey J (eds) Microtubules and microtubule inhibitors 1985. Elsevier Science Publishers B.V., Amsterdam, pp 313–323

    Google Scholar 

  • Roychowdhury S, Wang N, Rasenick MM (1994) Tubulin-G protein association stabi¬lizes GTP binding and activates GTPase: cytoskeletal participation in neuronal signal transduction. Biochemistry 33: 9800–9805

    Article  PubMed  CAS  Google Scholar 

  • Rudolph SA, Hegstrand LR, Greengard P, Malawista SE (1979) The interaction of colchicine with hormone-sensitive adenylate cyclase in human leukocytes. Mol Pharmacol 16: 805–812

    PubMed  CAS  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122: 509–522

    PubMed  CAS  Google Scholar 

  • Schulman H (1984) Differential phosphorylation of MAP-2 stimulated by calcium-calmodulin and cyclic AMP. Mol Cell Biol 4: 1175–1178

    PubMed  CAS  Google Scholar 

  • Stephens RE (1986) Membrane tubulin. Biol Cell 57: 95–110

    Article  PubMed  CAS  Google Scholar 

  • Sulser F (1984) Antidepressant treatments and regulation of norepinephrine- receptor-coupled adenylate cyclase systems in brain. Adv Biochem Psychopharmacol 39: 249–261

    PubMed  CAS  Google Scholar 

  • Wang N, Rasenick MM (1991) Tubulin-G protein interactions involve microtubule polymerization domains. Biochemistry 30: 10957–10965

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Yan K, Rasenick MM (1990) Tubulin binds specifically to the signal-transducing proteins, Gsa and GioCj. J Biol Chem 265: 1239–1242.

    Google Scholar 

  • Yamamoto H, Tomita U, Mikuni M, Kobayasi I, Kagaya A, Katada T, Ui M, Takahashi K (1992) Direct activation of purified Go-type GTP binding protein by tricyclic antidepressants. Neurorosci Lett 139: 194–196

    Article  CAS  Google Scholar 

  • Yan K, Greene E, Belga F, Rasenick MM (1996) Synaptic membrane G proteins are complexed with tubulin in situ. J Neurochem 66: 1489–1495

    Article  PubMed  CAS  Google Scholar 

  • Zemlan FP, Garver DL (1990) Depression and antidepressant therapy: receptor dy¬namics. Prog Neuropsychopharmacol Biol Psychiatry 14: 503–523

    Article  PubMed  CAS  Google Scholar 

  • Zisapel N, Levi M, Gozes I (1980) Tubulin: an integral protein of mammalian synaptic vesicle membranes. J Neurochem 34: 26–32

    Article  PubMed  CAS  Google Scholar 

  • Zor U (1983) Role of cytoskeletal organization in the regulation of adenylate cyclase- cyclic adenosine monophosphate by hormones. Endocr Rev 4: 1–21

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Tokyo

About this paper

Cite this paper

Hatta, S., Ohshika, H. (1998). Participation of Cytoskeletal Elements in Neuronal Signal Transduction: New Insight into the Molecular Basis of Antidepressant Action. In: Ozawa, H., Saito, T., Takahata, N. (eds) Signal Transduction in Affective Disorders. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68479-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68479-4_9

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68481-7

  • Online ISBN: 978-4-431-68479-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics