Skip to main content

Postreceptor Signal-Transduction Systems as Potential Targets of Lithium

  • Conference paper
Signal Transduction in Affective Disorders

Abstract

All cells have the capacity to receive external information and to transduce it to intracellular signals ending in physiological responses specific to the cell type. The rapid advance in neuroscience has elucidated the molecular mechanisms underlying such transmembrane signaling pathways. The extra-cellular information transmitted by hormones, neurotransmitters, and neuromodulators is recognized by specific protein molecules at the cell surface (receptors), which constitute ion channels themselves or modulate intracellular enzymatic machinery, resulting in alteration of second-messenger levels via guanine nucleotide-binding regulatory (G) proteins. The former type of receptor, the ligand-gated ion channels, also known as ionotropic receptors, includes nicotinic acetylcholine, serotonin3 (5-HT3), γ-aminobutyric acidA (GABAA), and excitatory amino acid receptors, such as N-methyl-D-aspantate (NMDA), α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), and kinate subtypes, that respond to the agonist-induced stimulation within milliseconds. The latter type of receptor, the G-protein-coupled or metabotropic receptors, includes adrenergic, serotonergic (except for 5-HT3 receptors), dopaminergic, muscarinic acetylcholine, opioid, adenosine, GABAB, metabotropic glutamate, and many neuropeptide receptors. This type of receptor couples with second-messenger-generating enzymes, such as adenylyl cyclase, phospholipase C, cyclic guanosine monophosphate (GMP) phosphodiesterase, and phospholipase A2, as well as several ion channels, through the respective G proteins, thus mediating much slower signaling than the ionotropic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackermann KE, Gish BG, Honchar MP, Sherman WR (1987) Evidence that inositol 1–phosphate in brain of lithium-treated rats results mainly from phosphatidylinositol metabolism. Biochem J 242: 517–524

    PubMed  CAS  Google Scholar 

  • Allison JH, Blisner ME (1976) Inhibition of the effect of lithium on brain inositol by atropine and scopolamine. Biochem Biophys Res Commun 68: 1332–1338

    PubMed  CAS  Google Scholar 

  • Allison JH, Stewart MA (1971) Reduced brain inositol in lithium-treated rats. Nature New Biol 233: 267–268

    PubMed  CAS  Google Scholar 

  • Allison JH, Blisner ME, Holland WH, Hipps PP, Sherman WR (1976) Increased brain myo-inositol 1-phosphate in lithium-treated rats. Biochem Biophys Res Commun 71: 664–670

    PubMed  CAS  Google Scholar 

  • Andersen PH, Geisler A (1984) Lithium inhibition of forskolin-stimulated adenylate cyclase. Neuropsychobiology 12: 1–3

    PubMed  CAS  Google Scholar 

  • Andersen PH, Geisler A, Klysner R (1984a) No change in rat cerebral cortex calmodulin content following chronic treatment with lithium, reserpine, imipramine, and lithium combined with reserpine or imipramine. Acta Pharmacol Toxicol 54: 394–399

    CAS  Google Scholar 

  • Andersen PH, Klysner R, Geisler A (1984b) Fluoride-stimulated adenylate cyclase activity in rat brain following chronic treatment with psychotropic drugs. Neuro-pharmacology 23: 445–447

    CAS  Google Scholar 

  • Andersen PH, Klysner R, Geisler A (1984c) Forskolin-stimulated adenylate cyclase activity in rat cerebral cortex following chronic treatment with psychotropic drugs. Acta Pharmacol Toxicol 55: 278–282

    CAS  Google Scholar 

  • Arenander AT, de Vellis J, Herschman HR (1989) Induction of c-fos and TIS genes in cultured rat astrocytes by neurotransmitters. J Neurosci Res 24: 107–114

    PubMed  CAS  Google Scholar 

  • Attwood PV, Ducep J-B, Chanal M-C (1988) Purification and properties of myoinositol-1-phosphatase from bovine brain. Biochem J 253: 387–394

    PubMed  CAS  Google Scholar 

  • Avissar S, Schreiber G (1992) The involvement of guanine nucleotide binding proteins in the pathogenesis and treatment of affective disorders. Biol Psychiatr 31: 435–459

    CAS  Google Scholar 

  • Avissar S, Schreiber G, Danon A, Belmaker RH (1988) Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature 331: 440–442

    PubMed  CAS  Google Scholar 

  • Avissar S, Schreiber G, Aulakh CS, Wozniak KM, Murphy DL (1990) Carbamazepine and electroconvulsive shock attenuate p-adrenoceptor and muscarinic cholinoceptor coupling to G proteins in rat cortex. Eur J Pharmacol (Mol Pharmacol Sec) 189: 99–103

    CAS  Google Scholar 

  • Avissar S, Murphy DL, Schreiber G (1991) Magnesium reversal of lithium inhibition of p-adrenergic and muscarinic receptor coupling to G proteins. Biochem Pharmacol 41: 171–175

    PubMed  CAS  Google Scholar 

  • Baraban JM, Worley PF, Snyder SH (1989) Second messenger systems and psychoactive drug action: focus on the phosphoinositide system and lithium. Am J Psychiatr 146: 1251–1260

    PubMed  CAS  Google Scholar 

  • Batty I, Nahorski SR (1985) Differential effects of lithium on muscarinic receptor stimulation of inositol phosphates in rat cerebral cortex slices. J Neurochem 45:1514– 1521

    Google Scholar 

  • Batty I, Nahorski SR (1987) Lithium inhibits muscarinic-receptor-stimulated inositol tetrakisphosphate accumulation in rat cerebral cortex. Biochem J 247: 797–800

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 206: 587–595

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1989) Neural and developmental actions of lithium: a unifying hypothesis. Cell 59: 411–419

    PubMed  CAS  Google Scholar 

  • Birnbaumer L (1992) Receptor-to-effector signaling through G proteins: roles for pydimers as well as a subunits. Cell 71: 1069–1072

    PubMed  CAS  Google Scholar 

  • Birnbaumer L, Abramowitz J, Brown AM (1990) Receptor-effector coupling by G proteins. Biochim Biophys Acta 1031: 163–224

    PubMed  CAS  Google Scholar 

  • Brami BA, Leli U, Hauser G (1993) Elevated phosphatidyl-CMP is not the source of diacylglycerol accumulation induced by lithium in NG108-15 cells. J Neurochem 60: 1137–1142

    PubMed  CAS  Google Scholar 

  • Burke G (1970) Effects of cations and ouabain on thyroid adenyl cyclase. Biochim Biophys Acta 220: 30–41

    PubMed  CAS  Google Scholar 

  • Casebolt TL, Jope RS (1987) Chronic lithium treatment reduces norepinephrine–stimulated inositol phospholipid hydrolysis in rat cortex. Eur J Pharmacol 140: 245–246

    PubMed  CAS  Google Scholar 

  • Casebolt TL, Jope RS (1989) Long-term lithium treatment selectively reduces receptor-coupled inositol phospholipid hydrolysis in rat brain. Biol Psychiatr 25: 329–340

    CAS  Google Scholar 

  • Colin SF, Chang H-C, Mollner S, Pfeuffer T, Reed RR, Duman RS, Nestler EJ (1991) Chronic lithium regulates the expression of adenylate cyclase and Grprotein a subunit in rat cerebral cortex. Proc Natl Acad Sci USA 88: 10634–10637

    PubMed  CAS  Google Scholar 

  • Dixon JF, Lee CH, Los GV, Hokin LE (1992) Lithium enhances accumulation of [3H]inositol radioactivity and mass of second messenger inositol 1,4,5-trisphosphate in monkey cerebral cortex slices. J Neurochem 59: 2332–2335

    PubMed  CAS  Google Scholar 

  • Divish MM, Sheftel G, Boyle A, Kalasapudi VD, Papolos DF, Lachman HM (1991) Differential effect of lithium on fos protooncogene expression mediated by receptor and postreceptor activators of protein kinase C and cyclic adenosine monophosphate: model for its antimanic action. J Neurosci Res 28: 40–48

    PubMed  CAS  Google Scholar 

  • Dousa TP (1974) Interaction of lithium with vasopressin-sensitive cyclic AMP system of human renal medulla. Endocrinology 95: 1359–1366

    PubMed  CAS  Google Scholar 

  • Dousa T, Hechter O (1970) The effect of Nacl and Licl on vasopressin-sensitive adenyl cyclase. Life Sci 9: 765–770

    CAS  Google Scholar 

  • Drummond AH (1987) Lithium and inositol-linked signalling mechanisms. Trends Pharmacol Sci 8: 129–133

    CAS  Google Scholar 

  • Ebstein RP, Hermoni M, Belmaker RH (1980) The effect of lithium on noradrenaline–induced cyclic AMP accumulation in rat brain: inhibition after chronic treatment and absence of supersensitivity. J Pharmacol Exp Ther 213: 161–167

    PubMed  CAS  Google Scholar 

  • Ellis J, Lenox RH (1991) Receptor coupling to G proteins: interactions not affected by lithium. Lithium 2: 141–147

    CAS  Google Scholar 

  • Elphick M, Taghavi Z, Powell T, Godfrey PP (1988) Alteration of inositol phospholipid metabolism in rat cortex by lithium but not carbamazepine. Eur J Pharmacol 156: 411–414

    PubMed  CAS  Google Scholar 

  • Gee NS, Ragan CI, Watling KJ, Aspley S, Jackson RG, Reid GG, Gani D, Shute JK (1988a) The purification and properties of myo-inositol monophosphatase from bovine brain. Biochem J 249: 883–889

    PubMed  CAS  Google Scholar 

  • Gee NS, Reid GG, Jackson RG, Barnaby RJ, Ragan CI (1988b) Purification and properties of inositol-l,4-bisphosphatase from bovine brain. Biochem J 253: 777–782

    PubMed  CAS  Google Scholar 

  • Geisler A, Klysner R (1978) Influence of lithium on dopamine-stimulated adenylate cyclase activity in rat brain. Life Sci 23: 635–636

    PubMed  CAS  Google Scholar 

  • Geisler A, Klysner R (1985) The effect of lithium in vitro and in vivo on dopamine–sensitive adenylate cyclase activity in dopaminergic areas of the rat brain. Acta Pharmacol Toxicol 56: 1–5

    CAS  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56: 615–649

    PubMed  CAS  Google Scholar 

  • Godfrey PP (1989) Potentiation by lithium of CMP-phospatidate formation in carbachol-stimulated rat cerebral-cortical slices and its reversal by myo-inositol. Biochem J 258: 621–624

    PubMed  CAS  Google Scholar 

  • Godfrey PP, McClue SJ, White AM, Wood AJ, Grahame-Smith DG (1989) Subacute and chronic in vivo lithium treatment inhibits agonist–and sodium fluoride–stimulated inositol phosphate production in rat cortex. J Neurochem 52: 498–506

    PubMed  CAS  Google Scholar 

  • Gudermann T, Schoneberg T, Schultz G (1997) Functional and structural complexity of signal transduction via G-protein-coupled receptors. Annu Rev Neurosci 20:399– 427

    Google Scholar 

  • Hallcher LM, Sherman WR (1980) The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 255:10896– 10901

    Google Scholar 

  • Hamburger-Bar R, Robert M, Newman M, Belmaker RH (1986) Interstrain correla-tion between behavioural effects of lithium and effects on cortical cyclic AMP. Pharmacol Biochem Behav 24: 9–13

    PubMed  CAS  Google Scholar 

  • Heacock AM, Seguin EB, Agranoff BW (1993) Measurement of receptor-activated phosphoinositide turnover in rat brain: nonequivalence of inositol phosphate and CDP-diacylglycerol formation. J Neurochem 60: 1087–1092

    PubMed  CAS  Google Scholar 

  • Hepler JR, Gilman AG (1992) G proteins. Trends Biol Sci 17: 383–387

    CAS  Google Scholar 

  • Hirvonen M-R, Savolainen K (1991) Lithium-induced decrease of brain inositol and increase of brain inositol-l-phosphate is transient. Neurochem Res 16: 905–911

    PubMed  CAS  Google Scholar 

  • Hirvonen M-R, Komulainen H, Paljarvi L, Savolainen K (1989) Time-course of malaoxon-induced alterations in brain regional inositol-l-phosphate levels in convulsing and nonconvulsing rats. Neurochem Res 14: 143–147

    PubMed  CAS  Google Scholar 

  • Honchar MP, Olney JW, Sherman WR (1983) Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats. Science 220: 323–325

    PubMed  CAS  Google Scholar 

  • Honchar MP, Ackermann KE, Sherman WR (1989) Chronically administered lithium alters neither myo-inositol monophosphatase activity nor phosphoinositide levels in rat brain. J Neurochem 53: 590–594

    PubMed  CAS  Google Scholar 

  • Honchar MP, Vogler GP, Gish BG, Sherman WR (1990) Evidence that phosphoinositide metabolism in rat cerebral cortex stimulated by pilocarpine, physostig–mine, and pargyline in vivo is not changed by chronic lithium treatment. J Neurochem 55: 1521–1525

    PubMed  CAS  Google Scholar 

  • Hotta I, Yamawaki S (1986) Lithium decreases 5-HTx receptors but increases 5-HT–sensitive adenylate cyclase activity in rat hippocampus. Biol Psychiatr 21: 1382–1390

    CAS  Google Scholar 

  • Hsiao JK, Manji HK, Chen G, Bitran JA, Risby ED, Potter WZ (1992) Lithium administration modulates platelet G; in humans. Life Sci 50: 227–233

    PubMed  CAS  Google Scholar 

  • Inhorn RC, Majerus PW (1987) Inositol polyphosphate 1-phosphatase from calf brain. J Biol Chem 262: 15946–15952

    PubMed  CAS  Google Scholar 

  • Iniguez-Lluhi J, Kleuss C, Gilman AG (1993) The importance of G-protein pysubunits. Trends Cell Biol 3: 230–236

    PubMed  CAS  Google Scholar 

  • Jope RS, Williams MB (1994) Lithium and brain signal transduction systems. Biochem Pharmacol 47: 429–441

    PubMed  CAS  Google Scholar 

  • Jope RS, Song L, Kolasa K (1992) Inositol trisphosphate, cyclic AMP, and cyclic GMP in rat brain regions after lithium and seizures. Biol Psychiatr 31: 505–514

    CAS  Google Scholar 

  • Joseph NE, Renshaw PF, Leigh JS Jr (1987) Systemic lithium administration alters rat cerebral cortex phospholipids. Biol Psychiatr 22: 540–544

    CAS  Google Scholar 

  • Kalasapudi VD, Sheftel G, Divish MM, Papolos DF, Lachman HM (1990) Lithium augments fos protooncogene expression in PC12 pheochromocytoma cells: implications for therapeutic action of lithium. Brain Res 521: 47–54

    PubMed  CAS  Google Scholar 

  • Kawamoto H, Watanabe Y, Imaizumi T, Iwasaki T, Yoshida H (1991) Effects of lithium ion on ADP ribosylation of inhibitory GTP-binding protein by pertussis toxin, islet-activating protein. Eur J Pharmacol (Mol Pharmacol Sec) 206: 33–37

    CAS  Google Scholar 

  • Kendall DA, Nahorski SR (1987) Acute and chronic lithium treatments influence agonist and depolarization-stimulated inositol phospholipid hydrolysis in rat cerebral cortex. J Pharmacol Exp Ther 241: 1023–1027

    PubMed  CAS  Google Scholar 

  • Kendall DA, Whitworth P (1990) Lithium amplifies inhibitions of inositol phospholipid hydrolysis in mammalian brain slices. Br J Pharmacol 100: 723–728

    PubMed  CAS  Google Scholar 

  • Kennedy ED, Challis RAJ, Nahorski SR (1989) Lithium reduces the accumulation of inositol polyphosphate second messengers following cholinergic stimulation of cerebral cortex slices. J Neurochem 53: 1652–1655

    PubMed  CAS  Google Scholar 

  • Kennedy ED, Challis RAJ, Raga CI, Nahorski SR (1990) Reduced inositol polyphosphate accumulation and inositol supply induced by lithium in stimulated cerebral cortex slices. Biochem J 267: 781–786

    PubMed  CAS  Google Scholar 

  • Lee CH, Dixon JF, Reichman M, Moummi C, Los G, Hokin LE (1992) Li+ increases accumulation of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in cholinergically stimulated brain cortex slices in guinea pig, mouse and rat. Biochem J 282: 377–385

    PubMed  CAS  Google Scholar 

  • Lenox HR, Manji HK (1995) Lithium. In: Schatzberg AF, Nemeroff CB (eds) Textbook of psychopharmacology. American Psychiatric Press, Washington, DC, pp 303–349

    Google Scholar 

  • Lenox RH, Watson DG, Patel J, Ellis J (1992) Chronic lithium administration alters a prominent PKC substrate in rat hippocampus. Brain Res 570: 333–340

    PubMed  CAS  Google Scholar 

  • Lenox RH, McNamara RK, Watterson JM, Watson DG (1996) Myristoylated alanine-rich C kinase substrate (Marcks): a molecular target for the therapeutic action of mood stabilizers in the brain J Clin Psychiatr 57 (suppl 13): 23–31

    CAS  Google Scholar 

  • Lesch KP, Aulakh CS, Tolliver TJ, Hill JL, Wolozin BL, Murphy DL (1991) Differential effects of long-term lithium and carbamazepine administration on Gsa and Gia protein in rat brain. Eur J Pharmacol (Mol Pharmacol Sec) 207: 355–359

    CAS  Google Scholar 

  • Li PP, Tam Y-K, Young LT, Warsh JJ (1991) Lithium decreases Gs, Gi-1 and Gi-2 a–subunit mRNA levels in rat cortex. Eur J Pharmacol (Mol Pharmacol Sec) 206:165– 166

    Google Scholar 

  • López-Corcuera B, Giménez C, Aragón C (1988) Change of synaptic membrane lipid composition and fluidity by chronic administration of lithium. Biochim Biophys Acta 939: 467–475

    PubMed  Google Scholar 

  • Manji HK (1992) G proteins: implications for psychiatry. Am J Psychiatr 149: 746–760

    PubMed  CAS  Google Scholar 

  • Manji HK, Lenox RH (1994) Long-term action of lithium: a role for transcriptional and posttranscriptional factors regulated by protein kinase C. Synapse 16: 11–28

    PubMed  CAS  Google Scholar 

  • Manji HK, Etcheberrigaray R, Chen G, Olds JL (1993) Lithium decreases membrane–associated protein kinase C in hippocampus: selectivity for the a isozyme. J Neurochem 61: 2303–2310

    PubMed  CAS  Google Scholar 

  • Manji HK, Potter WZ, Lenox RH (1995) Signal transduction pathways. Molecular targets for lithiums action. Arch Gen Psychiatr 52: 531–543

    Google Scholar 

  • Manji HK, Chen G, Hsiao JK, Risby ED, Masana MI, Potter WZ (1996) Regulation of signal transduction pathways by mood-stabilizing agents: implications for the delayed onset of therapeutic efficacy. J Clin Psychiatr 57 (suppl 13): 34–46

    CAS  Google Scholar 

  • Masana MI, Bitran JA, Hsiao JK, Mefford IN, Potter WZ (1991) Lithium effects on noradrenergic-linked adenylate cyclase activity in intact rat brain: an in vivo microdialysis study. Brain Res 538: 333–336

    PubMed  CAS  Google Scholar 

  • Masana MI, Bitran JA, Hsiao JK, Potter WZ (1992) In vivo evidence that lithium inactivates G; modulation of adenylate cyclase in brain. J Neurochem 59: 200–205

    PubMed  CAS  Google Scholar 

  • Mork A, Geisler A (1987) Effects of lithium on calmodulin-stimulated adenylate cyclase activity in cortical membranes from rat brain. Pharmacol Toxicol 60: 17–23

    PubMed  CAS  Google Scholar 

  • Mork A, Geisler A (1989a) Effects of GTP on hormone-stimulated adenylate cyclase activity in cerebral cortex, striatum, and hippocampus from rats treated chronically with lithium. Biol Psychiatr 26: 279–288

    CAS  Google Scholar 

  • Mork A, Geisler A (1989b) Effects of lithium ex vivo on the GTP-mediated inhibition of calcium-stimulated adenylate cyclase activity in rat brain. Eur J Pharmacol 168: 347–354

    PubMed  CAS  Google Scholar 

  • Mork A, Geisler A (1989c) The effects of lithium in vitro and ex vivo on adenylate cyclase in brain are exerted by distinct mechanisms. Neuropharmacology 28: 307–311

    PubMed  CAS  Google Scholar 

  • Mork A, Geisler A (1995) Effects of chronic lithium treatment on agonist-enhanced extracellular concentrations of cyclic AMP in the dorsal hippocampus of freely moving rats. J Neurochem 65: 134–139

    PubMed  CAS  Google Scholar 

  • Nahorski SR, Ragan CI, Challis RAJ (1991) Lithium and the phosphoinositide cycle: an example of uncompetitive inhibition and its pharmacological consequences. Trends Pharmacol Sei 12: 297–303

    CAS  Google Scholar 

  • Navidi M, Yoa F-G, Sun GY (1991) Brief chronic effects of lithium administration on rat brain phosphoinositides and phospholipids. J Neurosci Res 28: 428–433

    PubMed  CAS  Google Scholar 

  • Newman ME, Belmaker RH (1987) Effects of lithium in vitro and ex vivo on components of the adenylate cyclase system in membranes from the cerebral cortex of the rat. Neuropharmacology 26: 211–217

    PubMed  CAS  Google Scholar 

  • Newman M, Klein E, Birmaher B, Feinsod M, Belmaker RH (1983) Lithium at therapeutic concentrations inhibits human brain noradrenaline-sensitive cyclic AMP accumulation. Brain Res 278: 380–381

    PubMed  CAS  Google Scholar 

  • Newman M, Zohar J, Kalian M, Belmaker RH (1984) The effects of chronic lithium and ECT on Aj and A2 adenosine receptor systems in rat brain. Brain Res 291: 188 — 192

    PubMed  CAS  Google Scholar 

  • Newman ME, Drummer D, Lerer B (1990) Single and combined effects of desipramine and lithium on serotonergic receptor number and second messenger function in rat brain. J Pharmacol Exp Ther 252: 826–831

    PubMed  CAS  Google Scholar 

  • Newman ME, Ben-Zeev A, Lerer B (1991a) Chloroamphetamine did not prevent the effects of chronic antidepressants on 5-hydroxytryptamine inhibition of forskolin–stimulated adenylate cyclase in rat hippocampus. Eur J Pharmacol (Mol Pharmacol Sec) 207: 209–213

    CAS  Google Scholar 

  • Newman ME, Shapira B, Lerer B (1991b) Effects of lithium and desipramine on second messenger responses in rat hippocampus: relation to G protein effects. Neuropharmacology 30: 1297–1301

    PubMed  CAS  Google Scholar 

  • Odagaki Y, Koyama T, Yamashita I (1991a) Lithium does not alter ADP-ribosylation of Gi/Go catalyzed by pertussis toxin in rat brain. Pharmacol Toxicol 69: 355–360

    PubMed  CAS  Google Scholar 

  • Odagaki Y, Koyama T, Yamashita I (1991b) No alterations in the 5-HT1A-mediated inhibition of forskolin-stimulated adenylate cyclase activity in the hippocampal membranes from rats chronically treated with lithium or antidepressants. J Neural Transm 86: 85–96

    CAS  Google Scholar 

  • Odagaki Y, Koyama T, Matsubara S, Matsubara R, Yamashita I (1991c) Effects of lithium on ß-adrenergic receptor-adenylate cyclase system in rat cerebral cortical membranes. Jpn J Pharmacol 55: 407–414

    PubMed  CAS  Google Scholar 

  • Odagaki Y, Nishi N, Koyama T (1997) Lack of interfering effects of lithium on receptor/G protein coupling in human platelet and rat brain membranes. Biol Psychiatr 42: 697–703

    CAS  Google Scholar 

  • Palmer GC (1979) Interactions of antiepileptic drugs on adenylate cyclase and phosphodiesterases in rat and mouse cerebrum. Exp Neurol 63: 322–335

    PubMed  CAS  Google Scholar 

  • Peiffer A, Veilleux S, Barden N (1991) Antidepressant and other centrally acting drugs regulate glucocorticoid receptor messenger RNA levels in rat brain. Psychoneuroendocrinology 16: 505–515

    PubMed  CAS  Google Scholar 

  • Rana R, Hokin LE (1990) Role of phosphoinositides in transmembrane signaling. Physiol Rev 70: 115–164

    PubMed  CAS  Google Scholar 

  • Renshaw PF, Joseph NE, Leigh JS Jr (1986) Chronic dietary lithium induces increased levels of myo-inositol-1-phosphatase activity in rat cerebral cortex homogenates. Brain Res 380: 401–404

    PubMed  CAS  Google Scholar 

  • Savolainen KM, Nelson SR, Samson FE, Pazdernik TL (1988a) Soman-induced convulsions affect the inositol lipid signaling system: potentiation by lithium; attenuation by atropine and diazepam. Toxicol Appl Pharmacol 96: 305–314

    PubMed  CAS  Google Scholar 

  • Savolainen KM, Terry JB, Nelson SR, Samson FE, Pazdernik TL (1988b) Convulsions and cerebral inositol-1-phosphate levels in rats treated with diisopropyl fluoro–phosphate. Pharmacol Toxicol 63: 137–138

    PubMed  CAS  Google Scholar 

  • Savolainen KM, Hirvonen M-R, Tarhanen J, Nelson SR, Samson FE, Pazdernik TL (1990) Changes in cerebral inositol-l-phosphate concentrations in Licl-treated rats: regional and strain differences. Neurochem Res 15: 541–545

    PubMed  CAS  Google Scholar 

  • Schreiber G, Avissar S, Aulakh CS, Murphy DL (1990) Lithium-selective alteration of the function of brain versus cardiac Gs protein. Neuropharmacology 29: 1067–1071

    PubMed  CAS  Google Scholar 

  • Schreiber G, Avissar S, Danon A, Belmaker RH (1991) Hyperfunctional G proteins in mononuclear leukocytes of patients with mania. Biol Psychiatr 29: 273–280

    CAS  Google Scholar 

  • Schultz JE, Siggins GR, Schocker FW, Türck M, Bloom FE (1981) Effects of prolonged treatment with lithium and tricyclic antidepressants on discharge frequency, norepinephrine responses and beta receptor binding in rat cerebellum: electrophysiological and biochemical comparison. J Pharmacol Exp Ther 216: 28–38

    PubMed  CAS  Google Scholar 

  • Sherman WR, Leavitt AL, Honchar MP, Hallcher LM, Phillips BE (1981) Evidence that lithium alters phosphoinositide metabolism: chronic administration elevates primarily D-myo-inositol-l-phosphate in cerebral cortex of the rat. J Neurochem 36: 1947–1951

    PubMed  CAS  Google Scholar 

  • Sherman WR, Munsell LY, Gish BG, Honchar MP (1985) Effects of systemically administered lithium on phosphoinositide metabolism in rat brain, kidney, and testis. J Neurochem 44: 798–807

    PubMed  CAS  Google Scholar 

  • Sherman WR, Gish BG, Honchar MP, Munsell LY (1986) Effects of lithium on phosphoinositide metabolism in vivo. Fed Proc 45: 2639–2646

    PubMed  CAS  Google Scholar 

  • Sillence DJ, Downes CP (1992) Lithium treatment of affective disorders: effects of lithium on the inositol phospholipid and cyclic AMP signalling pathways. Biochim Biophys Acta 1138: 46–52

    PubMed  CAS  Google Scholar 

  • Song L, Jope RS (1992) Chronic lithium treatment impairs phosphatidylinositol hydrolysis in membranes from rat brain regions. J Neurochem 58: 2200–2206

    PubMed  CAS  Google Scholar 

  • Spiegel AM, Shenker A, Weinstein LS (1992) Receptor-effector coupling by G pro-teins: implications for normal and abnormal signal transduction. Endocr Rev 13:536— 565

    PubMed  Google Scholar 

  • Staunton DA, Magistretti PJ, Shoemaker WJ, Deyo SN, Bloom FE (1982) Effects of chronic lithium treatment on dopamine receptors in the rat corpus striatum. II. No effect on denervation or neuroleptic-induced supersensitivity. Brain Res 232:401– 412

    Google Scholar 

  • Stubbs EB Jr, Agranoff BW (1993) Lithium enhances muscarinic receptor-stimulated CDP-diacylglycerol formation in inositol-depleted SK-N-SH neuroblastoma cells. J Neurochem 60: 1292–1299

    PubMed  CAS  Google Scholar 

  • Takimoto K, Okada M, Matsuda Y, Nakagawa H (1985) Purification and properties of myo-inositol-1-phosphatase from rat brain. J Biochem 98: 363–370

    PubMed  CAS  Google Scholar 

  • Türck M, Yeh H, Woodward DJ, Schultz JE (1981) ß-Adrenergic receptors in rat cerebellum after neonatal X-irradiation: effect of prolonged imipramine and lithium treatment. Neurosci Lett 27: 357–362

    PubMed  Google Scholar 

  • Volonté C (1988) Lithium stimulates the binding of GTP to the membranes of PC12 cells cultured with nerve growth factor. Neurosci Lett 87: 127–132

    PubMed  Google Scholar 

  • Watanabe Y, Morita H, Imaizumi T, Takeda M, Hariguchi S, Nishimura T, Yoshida H (1990) Changes of ADP-ribosylation of GTP-binding protein by pertussis toxin in human platelets during long-term treatment of manic depression with lithium carbonate. Clin Exp Pharmacol Physiol 17: 809–812

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Kawamoto H, Imaizumi T, Sakagoshi N, Iwakura K, Morita H, Iwasaki T, Yoshida H (1991) Effects of lithium ion on the inhibitory GTP-binding protein and its coupling response. Cell Signal 3: 59–64

    PubMed  CAS  Google Scholar 

  • Watson DG, Lenox RH (1996) Chronic lithium-induced down-regulation of MARCKS in immortalized hippocampal cells: potentiation by muscarinic receptor activation. J Neurochem 67: 767–777

    PubMed  CAS  Google Scholar 

  • Weiner ED, Kalasapudi VD, Papolos DF, Lachman HM (1991) Lithium augments pilocarpine-induced fos gene expression in rat brain. Brain Res 553: 117–122

    PubMed  CAS  Google Scholar 

  • Weiner ED, Mallat AM, Papolos DF, Lachman HM (1992) Acute lithium treatment enhances neuropeptide Y gene expression in rat hippocampus. Mol Brain Res 12: 209–214

    PubMed  CAS  Google Scholar 

  • Whitworth P, Kendall DA (1988) Lithium selectively inhibits muscarinic receptor–stimulated inositol tetrakisphosphate accumulation in mouse cerebral cortex slices. J Neurochem 51: 258–265

    PubMed  CAS  Google Scholar 

  • Whitworth P, Kendall DA (1989) Effects of lithium on inositol phospholipid hydrolysis and inhibition of dopamine Dl receptor-mediated cyclic AMP formation by carbachol in rat brain slices. J Neurochem 53: 536–541

    PubMed  CAS  Google Scholar 

  • Whitworth P, Heal DJ, Kendall DA (1990) The effects of acute and chronic lithium treatment on pilocarpine-stimulated phosphoinositide hydrolysis in mouse brain in vivo. Br J Pharmacol 101: 39–44

    PubMed  CAS  Google Scholar 

  • Wolff J, Berens SC, Jones AB (1970) Inhibition of thyrotropin-stimulated adenyl cyclase activity of beef thyroid membranes by low concentration of lithium ion. Biochem Biophys Res Commun 39: 77–82

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Tokyo

About this paper

Cite this paper

Odagaki, Y., Nishi, N., Koyama, T. (1998). Postreceptor Signal-Transduction Systems as Potential Targets of Lithium. In: Ozawa, H., Saito, T., Takahata, N. (eds) Signal Transduction in Affective Disorders. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68479-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68479-4_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68481-7

  • Online ISBN: 978-4-431-68479-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics