Skip to main content

Effects of Antidepressants on Transmembrane Signaling

  • Conference paper
Signal Transduction in Affective Disorders
  • 49 Accesses

Abstract

Antidepressants are widely used for depression and other psychiatric disorders, but their neurochemical mechanism of action is still unclear. The monoamine hypothesis of affective disorders (Schildkraut 1965) proposes that antidepressants exhibit their therapeutic effects by inhibition of monoamine reuptake in presynaptic nerve terminals, which leads to facilitation of monoamine transmission. However, the acute effects of antidepressants on neurotransmission are inconsistent with the delayed onset of their clinical efficacy (Zelman and Garver 1990). Moreover, some monoamine reuptake inhibitors, such as cocaine, do have not an antidepressant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asaoka Y, Nakamura S-I, Yoshida K, Nishizuka Y (1992) Protein kinase C, calcium and phospholipid degradation. Trends Biochem Sci 17: 414–417

    Article  PubMed  CAS  Google Scholar 

  • Birnbaumer L (1990) G protein in signal transduction. Annu Rev Pharmacol Toxicol 30: 675–705

    Article  PubMed  CAS  Google Scholar 

  • Bobon D, Breulet M, Gerard-Vandenhove MA, Guiot-Goffioul F, Plomteux G, Sastre y Hernandez M, Troisfontaines B, von Frenckell R, Wachtel H (1988) Is phosphodi-esterase inhibition a new mechanism of antidepressant action? A double blind double-dummy study between rolipram and desipramine in hospitalized major and/ or endogenous depressives. Eur Arch Psychiatry Neurol Sci 238: 2–6

    Article  PubMed  CAS  Google Scholar 

  • Brindle PK, Montminy MR (1992) The CREB family of transcription activators. Curr Opin Gen Dev 2: 119–204

    Article  Google Scholar 

  • Cohen P (1988) Protein phosphorylation and hormone action. Proc R Soc Lond (Biol) 234: 115–144

    Article  CAS  Google Scholar 

  • De Chaffy de Courcelles D, Leysen JE, De Clerck F, Van Belle H, Janssen PA (1985) Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites. J Biol Chem 260: 7603–7608

    Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56: 615–649

    Article  PubMed  CAS  Google Scholar 

  • Harden TK (1992) G-protein-regulated phospholipase C: identification of component proteins. Adv Second Messenger Phosphoprotein Res 26: 225–250

    Google Scholar 

  • Hunter T, Karin M (1992) The regulation of transcription by phosphorylation. Cell 70: 375–387

    Article  PubMed  CAS  Google Scholar 

  • Kamata H, Ozawa H, Saito T, Hatta H, Takahata N (1996) Dimeric tubulin stimulated adenylyl cyclase activity after long-term amitriptyline treatment. Life Sci 60:57–66

    Google Scholar 

  • Koyama T, Kusumi I, Matsubara S, Yamashita I (1993) Study on biological markers in serotonergic system of affective disorders-Significance of serotonin2 receptor func-tion in the pathophysiology of depression. Annual Report of the National Project Team of Biological Studies on Pathogenesis and Treatment of Affective Disorders, Ministry of Health and Welfare, Japan, pp 71–76

    Google Scholar 

  • Menkes DB, Rasenick MM, Wheeler MA, Bitensky M (1983) Guanosine triphosphate activation of brain adenylate cyclase: enhancement by long term antidepressant treatment. Science 219: 65–67

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Asakura M, Sasuga Y (1995) Effects of chronic administration of antidepressants on microtubule assembly in rat cerebral cortex. Jpn J Psychopharmacol 15: 385–395

    CAS  Google Scholar 

  • Nestler EJ, Terwilliger RZ, Duman RS (1989) Chronic antidepressant administration alters the subcellular distribution of cyclic AMP-dependent protein kinase in rat frontal cortex. J Neurochem 53: 1644–1647

    Article  PubMed  CAS  Google Scholar 

  • Nibuya M, Nestler EJ, Duman RS (1996) Chronic antidepressant administration increases the expression of cyclic AMP response element binding protein ( CREB) in rat hyppocampus. J Neurosci 16: 2365–2372

    Google Scholar 

  • Ozawa H, Rasenick MM (1989) Coupling of the stimulatory GTP-binding protein Gs to rat synaptic membrane adenylate cyclase is enhanced subsequent to chronic antidepressant treatment. Mol Pharmacol 36: 803–808

    PubMed  CAS  Google Scholar 

  • Ozawa H, Katamura Y, Hatta S, Amemiya N, Saito T, Ohshika H, Takahata N (1994) Antidepressants directly influence in situ binding of guanine nucleotide in synaptic membrane. Life Sci 54: 925–932

    Article  PubMed  CAS  Google Scholar 

  • Ozawa H, Hashimoto E, Saito T, Yamamoto M, Maeda H, Takahata N, Gsell W, Frolich L, Riederer P (1997) Cyclic AMP production and degradation systems in postmortem cortex of depressed patients. J Neural Transmi (Gen Sec) in press

    Google Scholar 

  • Pandey GN, Pandey SC, Davis JM (1991) Effect of desipramine on inositol phosphate formation and inositol phospholipids in rat brain and human platelets. Psycho- pharmacol Bull 27: 255–261

    CAS  Google Scholar 

  • Perez J, Tinelli D, Brunello N, Racagni G (1989) cAMP-dependent phosphorylation of soluble and crude microtuble fractions of rat cerebral cortex after prolonged desmethylimipramine treatment. Eur J Pharmacol Sec 172: 305–316

    Google Scholar 

  • Peroutka SJ, Snyder SH (1980) Long-term antidepressant tratment decreases spiroperidol-labeled serotonin receptor binding. Science 210: 88–90

    Article  PubMed  CAS  Google Scholar 

  • Saito T (1997) Changes in G protein-mediated signal transduction in affective disorders. Jpn J Neuropsychophatmacol 19: 83–90

    CAS  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders; a review of supporting evidence. Am J Psychiatry 122: 509–520

    PubMed  CAS  Google Scholar 

  • Sekar MC, Hokin LE (1965) The role of phosphoinositides in signal transduction. J Membr Biol 89: 193–210

    Google Scholar 

  • Vetulani J, Sulser F (1975) Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain. Nature 257: 495 - 496

    Article  PubMed  CAS  Google Scholar 

  • Wachtel H (1990) The second-messenger dysbalance hypothesis of affective disorders. Pharmacopsychiatry 23: 27–32

    Article  PubMed  CAS  Google Scholar 

  • Walass SI, Greengard P (1991) Protein phosphorylation and neuronal function. Pharmacol Rev 43: 299–349

    Google Scholar 

  • Walden J, Fritze J, Van Calker D, Berger M, Grunze H (1995) A calcium antagonist for the treatment of depressive episodes: singlecase reports. J Psychiatr Res 29: 71–76

    Article  PubMed  CAS  Google Scholar 

  • Yamawaki S, Kagaya A, Okamoto Y, Uchitomi Y, Shimizu M, Nishida A (1996) Role of intracellular calcium mechanisms in the pathophysiology of affective disorders. In: Shibuya T (ed) International Academy for Biomedical and Drug Research. Vol. 11. Preclinical and clinical strategies for the treatment of neurodegenerative, cerebrovascular and mental disorders. Karger, Basel, pp 106–115

    Google Scholar 

  • Zelman FP, Garver DL (1990) Depression and antidepressant therapy: receptor dynamics. Prog Neuropsychopharmacol Biol Psychiatry 14: 503–523

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Tokyo

About this paper

Cite this paper

Saito, T. (1998). Effects of Antidepressants on Transmembrane Signaling. In: Ozawa, H., Saito, T., Takahata, N. (eds) Signal Transduction in Affective Disorders. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68479-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68479-4_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68481-7

  • Online ISBN: 978-4-431-68479-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics