Skip to main content

Coupling of Ion and Charge Movements: From Peroxidases to Protonmotive Oxidases

  • Conference paper
Oxygen Homeostasis and Its Dynamics

Summary

The energy cost of introduction of charges into regions of low dielectric strength in proteins can be reduced by associated binding of a proton to appropriately placed residues. Such protonations can be important in peroxidases and other soluble proteins, and are likely to be central to the protonmotive mechanism of oxidases. Three residues in subunit I of cytochrome oxidase that are likely to interfere with such protonations have been examined by mutagenesis, and the data are discussed in the light of the known crystal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rich PR (1996) Electron transfer complexes coupled to ion translocation. In: Bendall DS (ed) Protein electron transfer. BIOS, Oxford, pp 217–248

    Google Scholar 

  2. Moore GR, Harris DE, Leitch FA, Pettigrew GW (1984) Characterisations of ionisations that influence the redox potential of mitochondrial cytochrome c and photosynthetic bacterial cytochrome c2. Biochim Biophys Acta 764: 331–342

    Article  CAS  Google Scholar 

  3. Meunier B, Rodriguez-Lopez JN, Smith AT, et al. (1995) Laser photolysis behaviour of ferrous horseradish peroxidase with carbon monoxide and cyanide: effects of mutations in the distal heure pocket. Biochemistry 34: 14687–14692

    Article  PubMed  CAS  Google Scholar 

  4. Meunier B, Rich PR (1997) Photolysis of the cyanide adduct of the ferrous horseradish peroxidase. Biochim Biophys Acta 1318: 235–245

    Article  CAS  Google Scholar 

  5. Hallén S, Brzezinski P, Malmström BG (1994) Internal electron transfer in cytochrome c oxidase is coupled to the protonation of a group close to the bimetallic site. Biochemistry 33: 1467–1472

    Article  PubMed  Google Scholar 

  6. Verkhovsky MI, Morgan JE, Wikström M (1995) Control of electron delivery to the oxygen reduction site of cytochrome c oxidase: a role for protons. Biochemistry 34: 7483–7491

    Article  PubMed  CAS  Google Scholar 

  7. Rich PR (1995) Towards an understanding of the chemistry of oxygen reduction and proton translocation in the iron-copper respiratory oxidases. Aust J Plant Physiol 22: 479–486

    Article  CAS  Google Scholar 

  8. Morgan JE, Verkhovsky MI, Wikström M (1994) The histidine cycle: a new model for proton translocation in the respiratory heme-copper oxidases. J Bioenerg Biomembr 26: 599–608

    Article  PubMed  CAS  Google Scholar 

  9. Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376: 660–669

    Article  PubMed  CAS  Google Scholar 

  10. Tsukihara T, Aoyama H, Yamashita E, et al. (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272: 1136–1144

    Article  PubMed  CAS  Google Scholar 

  11. Rich PR, Meunier B, Mitchell RM, Moody AJ (1996) Coupling of charge and proton movement in cytochtrome c oxidase. Biochim Biophys Acta 1275: 91–95

    Article  Google Scholar 

  12. Rich PR, Moody AJ (1996) Cytochrome c oxidase. In: Gräber P, Milazzo G (eds) Bioelectrochemistry: principles and practice. Birkhäuser, Basel, pp 419–457

    Google Scholar 

  13. Tsukihara T, Aoyama H, Yamashita E, et al. (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science 269: 1069–1074

    Article  PubMed  CAS  Google Scholar 

  14. Hosler JP, Ferguson-Miller S, Calhoun MW, et al. (1993) Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochrome act, and cytochrome bo. J Bioenerg Biomembr 25: 121–136

    Article  PubMed  CAS  Google Scholar 

  15. Babcock GT, Wikström M (1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356: 301–309

    Article  PubMed  CAS  Google Scholar 

  16. Meunier B, Colson A-M (1994) Random deficiency mutations and reversions in the cytochrome c oxidase subunits I, II and III of Saccharomyces cerevisiae. Biochim Biophys Acta 1187: 112–115

    Article  PubMed  CAS  Google Scholar 

  17. Moody AJ, Rich PR (1990) The effect of pH on redox titrations of heure a in cyanideliganded cytochrome-c oxidase: experimental and modelling studies. Biochim Biophys Acta 1015: 205–215

    Article  PubMed  CAS  Google Scholar 

  18. Svensson-EM, Thomas JW, Gennis RB, et al. (1996) Kinetics of electron and proton transfer during the reaction of wild type and helix VI mutants of cytochrome bo 3 with oxygen. Biochemistry 35: 13673–13680

    Article  Google Scholar 

  19. Svensson M, Hallén S, Thomas JW, et al. (1995) Oxygen reaction and proton uptake in helix VIII mutants of cytochrome bo 3. Biochemistry 34: 5252–5258

    Article  PubMed  CAS  Google Scholar 

  20. Wrigglesworth JM (1984) Formation and reduction of a “peroxy” intermediate of cytochrome c oxidase by hydrogen peroxide. Biochem J 217: 715–719

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Tokyo

About this paper

Cite this paper

Rich, P.R., Meunier, B., Jünemann, S. (1998). Coupling of Ion and Charge Movements: From Peroxidases to Protonmotive Oxidases. In: Ishimura, Y., Shimada, H., Suematsu, M. (eds) Oxygen Homeostasis and Its Dynamics. Keio University Symposia for Life Science and Medicine, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68476-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68476-3_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68478-7

  • Online ISBN: 978-4-431-68476-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics