Skip to main content

Crystal Structure and Reaction Mechanism of Bovine Heart Cytochrome c Oxidase

  • Conference paper
Oxygen Homeostasis and Its Dynamics

Summary

Crystal structure of bovine heart cytochrome c oxidase at fully oxidized state at 2.8 Å resolution shows that this protein consists of 13 different subunits, each in one copy, and 8 phospholipids in addition to 7 metal ions, 2 irons, 3 coppers, 1 magnesium, and 1 zinc. Three redox active sites, CuA, heme a, and the O2 reduction site containing heme a 3 and CuB, are connected by three possible pathways for facile electron transfers. The pathways between CuA and heme a and between heme a and heme a 3 are consistent with the rapid electron transfers determined kinetically. However, the role of the direct pathway between CuA and heme a 3 is unknown. The coordination geometry of CuB together with the proximity between the two hemes suggest that heme a, not CuB, donates electrons to initiate the reduction of O2 in the two electron process. Tyr244 is identified as the proton donor for producing water from the intermediates during O2 reduction. Possible proton-pumping sites are mapped well separated from the O2 reduction site. No possible proton-pumping site involving the O2 reduction site has been identified, suggesting an indirect coupling between O2 reduction and proton pumping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferguson-Miller S, Babcock GT (1996) Heme/copper terminal oxidases. Chem Rev 96: 2889–2890

    Article  PubMed  CAS  Google Scholar 

  2. Meinecke L, Buse G (1986) Studies on cytochrome-c oxidase. XIII. Biol Chem HoppeSeyler 367: 67–73

    CAS  Google Scholar 

  3. Hensel S, Buse G (1990) Studies on cytochrome-c oxidase, XIV. Biol Chem HoppeSeyler 371: 411–422

    CAS  Google Scholar 

  4. Kadenbach B, Ungibaver U, Jaraush J, et al. (1983) The complexity of respiratory complexes. Trends Biochem Sci 8: 398–400

    Article  CAS  Google Scholar 

  5. Gibson QH, Greenwood C (1963) Reactions of cytochrome oxidase with oxygen and carbon monoxide. Biochem J 86: 541–554

    PubMed  CAS  Google Scholar 

  6. Kitagawa T, Ogura T (1997) Oxygen activation mechanism at the binuclear site of heme-copper oxidase superfamily as revealed by time-resolved resonance Raman spectroscopy. Prog Inorg Chem 45: 431–479

    Article  CAS  Google Scholar 

  7. Ogura T, Takahashi S, Shinzawa-Itoh K, et al. (1991) Time-resolved resonance Raman investigation of cytochrome oxidase catalysis: observation of a new oxygen-isotope sensitive Raman band. Bull Chem Soc Jpn 64: 2901–2907

    Article  CAS  Google Scholar 

  8. Minnaert K (1961) The kimetics of cytochrome c oxidase. I. The system: cytochrome c-cytochrome oxidase-oxygen. Biochim Biophys Acta 50: 23–34

    Article  PubMed  CAS  Google Scholar 

  9. Ferguson-Miller S, Brautigan DL, Margoliaoh E (1976) Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase. J Biol Chem 251: 1104–1115

    PubMed  CAS  Google Scholar 

  10. Ortega-Lopez J, Robinson NC (1995) Cytochrome c oxidase: biphasic kinetic result from incomplete reduction of cytochrome a by cytochrome c bound to the high-affinity site. Biochemistry 34: 10000–10008

    Article  PubMed  CAS  Google Scholar 

  11. Petersen LC, Nichols P, Degan H (1976) The effect of oxygen concentration on the steady-state kinetics of the solubilized cytochrome c oxidase. Biochim Biophys Acta 452: 59–65

    PubMed  CAS  Google Scholar 

  12. Tsukihara T, Aoyama H, Yamashita E, et al. (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science 269: 1069–1074

    Article  PubMed  CAS  Google Scholar 

  13. Iwata S, Ostermeier C, Ludwig B, et al. (1995) Structure at 2.8A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376: 660–669

    Article  PubMed  CAS  Google Scholar 

  14. Tsukihara T, Aoyama H, Yamashita E, et al. (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272: 1136–1144.

    Article  PubMed  CAS  Google Scholar 

  15. Fuller SD, Capaldi RA, Henderson R (1979) Structure of cytochrome c oxidase in deoxycholate-derived two-dimensional crystals. J Mol Biol 134: 305–327

    Article  PubMed  CAS  Google Scholar 

  16. Kadenbach B, Merle P (1981) On the function of multiple subunits of cytochrome c oxidase from higher eukaryotes. FEBS Lett 135: 1–11

    Article  PubMed  CAS  Google Scholar 

  17. Frank V, Kadenbach B (1996) Regulation of the Fr/e-stoichiometry of cytochrome c oxidase from bovine heart by intramitochondrial ATP/ADP ratios. FEBS Lett 382: 121–124

    Article  PubMed  CAS  Google Scholar 

  18. Chotia C, Levitt M, Richardson D (1997) Structure of proteins: packing of a-helices and pleated sheets. Proc Natl Acad Sci USA 74: 4130–4134

    Article  Google Scholar 

  19. Kroneck PMH, Antholine WA, Riester J, et al. (1988) The cupric site in nitrous oxide reductase contains a mixed-valence [Cu(II), Cu(I)] binuclear center: a multifrequency electron paramagnetic resonance investigation. FEBS Lett 242: 70–74

    Article  PubMed  CAS  Google Scholar 

  20. Hill BC (1994) Modeling the sequence of electron transfer reaction in the single turnover of reduced, mammalian cytochrome c oxidase. J Biol Chem 269: 2419–2425

    PubMed  CAS  Google Scholar 

  21. Wikström M, Krab K, Saraste M (1981) Cytochrome oxidase—a synthesis. Academic, London, pp 88–116

    Google Scholar 

  22. Nichols P, Wrigglesworth JM (1988) Routes of cytochrome a, reduction. Ann NY Acad Aci 550: 59–67

    Article  Google Scholar 

  23. Caughey WS, Wallace WJ, Volpe JA, et al. (1976) Cytochrome c oxidase. In: Boyer PD (ed) The enzymes, 3d edn. Academic, New York, pp 299–344

    Google Scholar 

  24. Cotton FA, Wilkinson G (1980) Advanced inorganic chemistry, 4th edn. Wiley, New York, pp 798–821

    Google Scholar 

  25. Kitagawa T, Mizutani Y (1994) Resonance Raman spectra of highly oxidized metalloporphyrins and heme proteins. Coord Chem Rev 135 /136: 685–735

    Article  Google Scholar 

  26. Wikström M, Bogacher A, Finel M, et al. (1994) Mechanism of proton translocation by the respiratory oxidases. The histidine cycle. Biochim Biophys Acta 1187: 106–111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Tokyo

About this paper

Cite this paper

Yoshikawa, S., Shinzawa-Itoh, K., Tsukihara, T. (1998). Crystal Structure and Reaction Mechanism of Bovine Heart Cytochrome c Oxidase. In: Ishimura, Y., Shimada, H., Suematsu, M. (eds) Oxygen Homeostasis and Its Dynamics. Keio University Symposia for Life Science and Medicine, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68476-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68476-3_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68478-7

  • Online ISBN: 978-4-431-68476-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics