Optical and Dynamical Properties of One-Dimensional Excitons in Conjugated Polymers

  • Shuji Abe
Part of the Springer Proceedings in Physics book series (SPPHY, volume 81)


The nature of excitons in conjugated polymers is discussed from a theoretical point of view. An intrachain exciton can be essentially described as a Wannier exciton. However, its one-dimensional character leads to an unusually large binding energy and an unusually small exciton size, for which the electronic correlation length turns out to be a decisive factor. These extraordinary features have important implications on the linear and nonlinear optical properties of conjugated polymers. In addition to these intrachain characteristics of excitons, we discuss the influence of interchain excitation transfer. It is demonstrated that the excitation transfer depends upon the interchain distance and the chain length in a complicated way due to the large molecular size. The limitation of the point dipole approximation as well as that of the extended dipole approximation are elucidated.


Cutoff Length High Energy Side Large Binding Energy Frenkel Exciton Interchain Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Abe, in Relaxation in Polymers edited by T. Kobayashi (World Scientific, Singapore, 1993) pp. 215.CrossRefGoogle Scholar
  2. [2]
    S. Abe, J. Phys. Soc. Jpn. 58 (1989) 62.CrossRefGoogle Scholar
  3. [3]
    R. Loudon, Amer. J. Phys. 27 (1959) 649.ADSCrossRefGoogle Scholar
  4. [4]
    S. Abe, J. Yu and W. P. Su, Phys. Rev. B 45 (1992) 8264.ADSCrossRefGoogle Scholar
  5. [5]
    A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W.-P. Su, Rev. Mod. Phys. 60 (1988) 781.ADSCrossRefGoogle Scholar
  6. [6]
    V. A. Shakin and S. Abe, Phys. Rev. B 50 (1994) 4306.ADSCrossRefGoogle Scholar
  7. [7]
    S. Abe, M. Schreiber, W.P. Su and J. Yu, Phys. Rev. B 45 (1992) 9432.ADSCrossRefGoogle Scholar
  8. [8]
    L. Sebastian and G. Weiser, Chem. Phys. Lett. 64 (1979) 396.ADSCrossRefGoogle Scholar
  9. [9]
    Y. Tokura, Y. Oowaki, T. Koda, and R. H. Baughman, Chem. Phys. 88 (1984) 437.CrossRefGoogle Scholar
  10. [10]
    T. Kanetake, K. Ishikawa, T. Hasegawa, T. Koda, K. Takeda, M. Hasegawa, K. Kubodera, and H. Kobayashi, Appl. Phys. Lett. 54 (1989) 2287.ADSCrossRefGoogle Scholar
  11. [11]
    W. E. Torruellas, D. Neher, R. Zanoni, G. I. Stegeman, F. Kajzar, and M. Leclerc, Chem. Phys. Lett. 175 (1990) 11.ADSCrossRefGoogle Scholar
  12. [12]
    S. Abe, Y. Shimoi, V. A. Shakin, and K. Harigaya, Mol. Cryst. Liq. Cryst. 256 (1994) 97.CrossRefGoogle Scholar
  13. [13]
    B.J. On and J.F. Ward, Mol. Phys. 20 (1971) 513.ADSCrossRefGoogle Scholar
  14. [14]
    R.W. Boyd, Nonlinear optics (Academic, London, 1992), Chap.3.Google Scholar
  15. [15]
    V. A. Shakin, S. Abe, and T. Kobayashi, Phys. Rev. B 53 (1996), in print.Google Scholar
  16. [16]
    C. Bubeck, A. Kaltbeitzel, A. Grund and M. LeClerc, Chem. Phys. 154 (1991) 343.CrossRefGoogle Scholar
  17. [17]
    N. Bloembergen, H. Lotem, and R. T. Lynch, Indian J. Pure Appl. Phys. 16 (1978) 151.Google Scholar
  18. [18]
    V. Czikklely, H. D. Forsterling, and H. Kuhn, Chem. Phys. Lett. 6 (1970) 207.ADSCrossRefGoogle Scholar
  19. [19]
    M. Schreiber and S. Abe, Synth. Metals 55–57 (1993) 50.CrossRefGoogle Scholar
  20. [20]
    Y. Shimoi and S. Abe, Phys. Rev. 49 (1994) 14113.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1996

Authors and Affiliations

  • Shuji Abe
    • 1
  1. 1.Electrotechnical LaboratoryTsukuba 305Japan

Personalised recommendations