Skip to main content

Microscopic and Anisotropic Dynamics of Spin Carriers with/without Charge

  • Conference paper
  • 104 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 81))

Abstract

Electron spin resonance (ESR) studies are reviewed, specifically focusing on an experimental parameter of frequency applied to organic conductive materials. By analyzing the ESR linewidth and/or the spin-lattice relaxation rate measured in a wide frequency range such as several MHz to 24 GHz, one can obtain a frequency spectrum of spin motion that gives characteristic parameters of such motion, anisotropic diffusion rates. The first example is a dynamics of so-called “neutral soli-ton” in trans-polyacetylene, which is a topological defect having spin half but no charge. In the case of polarons and/or conduction electrons in conducting materials, the dynamics of spin is equivalent to that of the charged carriers responsible for the electrical conduction. Polyaniline (PANI) and polythiophene (PT) are reviewed as examples of the conducting case with a quasi-one-dimensional electronic state. Recent development of this technique suggesting a new relaxation mechanism will be briefly mentioned.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Mizoguchi, Jpn. J. Appl. Phys., vol. 34, 1995, pp. 1–19.

    Article  ADS  Google Scholar 

  2. D. Lubzens, M.R. Shanabarger, and S. Schultz, Phys. Rev. Lett., vol. 29, 1972, pp. 1387.

    Article  ADS  Google Scholar 

  3. D.R. Fredkin and R. Freedman, Phys. Rev. Lett., vol. 29, 1972, pp. 1390–3.

    Article  ADS  Google Scholar 

  4. R. Freedman and D.R. Fredkin, Phys. Rev., vol. Bll, 1975, pp. 4847–58.

    Google Scholar 

  5. C.A. Sholl, J. Phys. C, vol. 14, 1981, pp. 447.

    Article  ADS  Google Scholar 

  6. M.A. Butler, L.R. Walker, and Z.G. Soos, J. Chem. Phys., vol. 64, 1976, pp. 3592.

    Article  ADS  Google Scholar 

  7. K. Mizoguchi and S. Kuroda, Magnetic Properties of Conducting Polymers, in Handbook of Organic Conductive Molecules and Polymers, ed. by H.S. Nalwa, John Wiley & Sons, Sussex, 1996, in press.

    Google Scholar 

  8. M. Nechtschein, Electron spin dynamics, in Handbook of Conducting Polymers,ed. by T. Skotheim, Marcel Dekker, New York, 1996, in press.

    Google Scholar 

  9. A. Abragam, The Principles of Nuclear Magnetism, Oxford Univ. Press, Oxford, 1961.

    Google Scholar 

  10. G. Soda, D. Jerome, M. Weger, J. Alizon, G. Gallice, H. Robert, J.M. Fabre, and L. Girai, J. de Phys., vol. 38 1977, pp. 931–48.

    Article  Google Scholar 

  11. W.G. Clark, K. Glover, M.D. Lan, and L.J. Azevedo, J. Phys. Colloq., vol. 44 1983, C3 pp. 1493–9.

    Google Scholar 

  12. K. Mizoguchi, Makromol. Chem., Macromol. Symp., vol. 37 1990, pp. 53–66.

    Article  Google Scholar 

  13. K. Mizoguchi, K. Kume, and H. Shirakawa, Mol. Cryst. Liq. Cryst., vol. 118 1985, pp. 45962.

    Google Scholar 

  14. J.S. Hyde, W. Froncisz, and T. Oies, J. Mag. Res., vol. 82 1989, pp. 223.

    Article  Google Scholar 

  15. K. Mizoguchi, K. Kume, and H. Shirakawa, Solid St. Commun., vol. 50 1984, pp. 213–18.

    Article  ADS  Google Scholar 

  16. K. Mizoguchi, K. Kume, S. Masubuchi, and H. Shirakawa, Solid St. Commun., vol. 59 1986, pp. 465–8.

    Article  ADS  Google Scholar 

  17. K. Mizoguchi, K. Kume, and H. Shirakawa, Synth. Met., vol. 17 1987, pp. 439–45.

    Article  Google Scholar 

  18. K. Mizoguchi, S. Komukai, T. Tsukamoto, K. Kume, M. Suezaki, K. Akagi, and H. ShirakawaSynth. Met. vol. 28 1989, pp. D393–8.

    Article  Google Scholar 

  19. K. Mizoguchi, S. Masubuchi, K. Kume, K. Akagi, and H. Shirakawa, Phys. Rev., vol. B51 1995, pp. 8864–73.

    ADS  Google Scholar 

  20. B.R. Weinberger, E. Ehrenfreund, A. Pron, A.J. Heeger, and A.G. MacDiarmid, J. Chem. Phys., vol. 72 1980, pp. 4749–55.

    Article  ADS  Google Scholar 

  21. M. Nechtschein, F. Devreux, R.L. Greene, T.C. Clarke, and G.B. Street, Phys. Rev. Lett., vol. 44 1980, pp. 356–9.

    Article  ADS  Google Scholar 

  22. K. Holczer, J.P. Boucher, F. Devreux, and M. Nechtschein, Phys. Rev., vol. B23 1981, pp. 1051–63.

    ADS  Google Scholar 

  23. M. Nechtschein, F. Devreux, F. Genoud, M. Guglielmi, and K. Holczer, Phys. Rev., vol. B27 1983, pp. 61–78.

    ADS  Google Scholar 

  24. W.G. Clark, K. Glover, G. Mozurkewich, S. Etemad, and M. Maxfield, Mol. Cryst. Liq. Cryst., vol. 117 1985, pp. 447.

    Article  Google Scholar 

  25. C.P. Slichter, Principles of Magnetic Resonance, vol. 1 3rd ed. Springer, Berlin, Heidelberg, 1989.

    Google Scholar 

  26. K. Mizoguchi, H. Sakurai, F. Shimizu, S. Masubuchi, and K. Kume, Synth. Met., vol. 68 1995, pp.239–42.

    Article  Google Scholar 

  27. K. Mizoguchi, K. Kume, S. Masubuchi, and H. Shirakawa, Synth. Met., vol. 17 1987, pp. 405–11.

    Article  Google Scholar 

  28. S. Kuroda, M. Tokumoto, N. Kinoshita, and H. Shirakawa, J. Phys. Soc. Jpn., vol. 51 1982, pp. 693–4.

    Article  ADS  Google Scholar 

  29. S. Kuroda and H. Shirakawa, Phys. Rev., vol. B35 1987, pp. 9380–2.

    ADS  Google Scholar 

  30. S. Kuroda, Int. J. Mod. Phys. B, vol. 9 1995, pp. 221–60.

    Article  ADS  Google Scholar 

  31. Y. Wada and J.R. Schrieffer, Phys. Rev., vol. B18 1978, pp. 3897–912.

    MathSciNet  ADS  Google Scholar 

  32. M. Ogata and Y. Wada, Prog. Theor. Phys. Suppl.,1988, pp. 115–27.

    Google Scholar 

  33. K. Maki, Phys. Rev.,vol. B26 1982, pp. 4539–42.

    ADS  Google Scholar 

  34. K. Maki, Phys. Rev.,vol. B26 1982, pp. 2187–91.

    ADS  Google Scholar 

  35. K. Maki, Phys. Rev.,vol. B26 1982, pp. 2181–6.

    ADS  Google Scholar 

  36. S. Jeyadev and E.M. Conwell, Phys. Rev., vol. B36 1987, pp. 3284–93.

    ADS  Google Scholar 

  37. Y. Wada, Progr. Theor. Phys. Suppl., vol. 113 1993, pp. 1–23.

    Article  MathSciNet  ADS  Google Scholar 

  38. F. Devreux, Phys. Rev.,vol. B25 1982, pp. 6609.

    ADS  Google Scholar 

  39. S. Kivelson, Phys. Rev.,vol. B25 1982, pp. 3798–21.

    ADS  Google Scholar 

  40. D. Baeriswyl, D.K. Campbell, and S. Mazumdar, An overview of the theory of ic-conjugated polymers, in Conjugated Conducting Polymers, vol. 102 ed. by H.G. Kiess, Springer-Verlag, Berlin, Heidelberg, 1992, pp. 107.

    Google Scholar 

  41. K. Mizoguchi, M. Nechtschein, J.-P. Travers, and C. Menardo, Phys. Rev. Lett.,vol. 63 1989, pp. 66–9.

    Article  ADS  Google Scholar 

  42. K. Mizoguchi, M. Nechtschein, J.P. Travers, and C. Menardo, Synth. Met., vol. 29 1989, pp. E417–24.

    Article  Google Scholar 

  43. K. Mizoguchi, M. Nechtschein, and J.-P. Travers, Synth. Met., vol. 41 1991, pp. 113–16.

    Article  Google Scholar 

  44. K. Mizoguchi and K. Kume, Solid St. Commun., vol. 89 1994, pp. 971–5.

    Article  ADS  Google Scholar 

  45. A.G. MacDiarmid, J.C. Chiang, M. Halpern, W.S. Huang, S.L. Mu, N.L.D. Somasiri, W.Q. Wu, and S.I. Yaniger, Mol. Cryst. Liq. Cryst., vol. 121 1985, pp. 173.

    Article  Google Scholar 

  46. M. Reghu, Y. Cao, D. Moses, and A.J. Heeger, Synth. Met., vol. 57 1993, pp. 5020–5.

    Article  Google Scholar 

  47. A.P. Monkman and P.N. Adams, Synth. Met., vol. 41–43 1991, pp. 627.

    Article  Google Scholar 

  48. J.P. Pouget, M. Laridjani, M.E. Jozefowicz, A.J. Epstein, E.M. Scherr, and A.G. MacDiarmid, Synth. Met., vol. 51 1992, pp. 95–101.

    Article  Google Scholar 

  49. J.P. Pouget, Z. Oblakowski, Y. Nogami, P.A. Albouy, M. Laridjani, O.E.J. Min, A.G. MacDiarmid, J. Tsukamoto, T. Ishiguro, and A.J. Epstein, Synth. Met., vol. 65 1994, pp. 131–40.

    Article  Google Scholar 

  50. J.P. Pouget, C.-H. Hsu, A.G. MacDiarmid, and A.J. Epstein, Synth. Met., vol. 69 1995, pp. 119–20.

    Article  Google Scholar 

  51. C. Jeandey, J.P. Boucher, F. Ferrieu, and M. Nechtschein, Solid St. Commun., vol. 23 1977, pp. 673.

    Article  ADS  Google Scholar 

  52. A.J. Epstein, J.M. Ginder, F. Zuo, R.W. Bigelow, H.-S. Woo, D.B. Tanner, A.F. Richter, W.-S. Huang, and A.G. MacDiarmid, Synth. Met., vol. 18 1987, pp. 303–9.

    Article  Google Scholar 

  53. K. Mizoguchi and K. Kume, Synth. Met., vol. 69 1995, pp. 241–2.

    Article  Google Scholar 

  54. E. Houzé and M. Nechtschein, submitted to Phys. Rev. B.

    Google Scholar 

  55. E.J. Oh, Y. Min, J.M. Wiesinger, S.K. Manohar, E.M. Scherr, P.J. Prest, A.J. MacDiarmid, and A.J. Epstein, Synth. Met., vol. 55–57 1993, pp. 977.

    Article  Google Scholar 

  56. K. Mizoguchi, M. Honda, N. Kachi, F. Shimizu, H. Sakamoto, K. Kume, S. Masubuchi, and S. Kazama, Solid St. Commun., vol. 96 1995, pp. 333–7.

    Article  ADS  Google Scholar 

  57. K. Mizoguchi, M. Honda, S. Masubuchi, S. Kazama, and K. Kume, Jpn. J. Appl. Phys.,vol. 33 1994, pp. 971–5.

    Article  Google Scholar 

  58. S. Masubuchi, S. Kazama, K. Mizoguchi, H. Honda, K. Kume, R. Matsushita, and T. Matsuyama, Synth. Met., vol. 57 1993, pp. 4962–7.

    Article  Google Scholar 

  59. R.J. Elliott, Phys. Rev., vol. 96 1954, pp. 266–79.

    Article  ADS  MATH  Google Scholar 

  60. S. Masubuchi and S. Kazama, Synth. Met, vol. 74 1995, pp. 151–8.

    Article  Google Scholar 

  61. K. Mizoguchi, K. Misoo, K. Kume, K. Kaneto, T. Shiraishi, and K. Yoshino, Synth. Met., vol. 18 1987, pp. 195–8.

    Article  Google Scholar 

  62. F. Moraes, D. Davidov, M. Kobayashi, T.C. Chung, J. Chen, A.J. Heeger, and F. Wudl, Synth. Met., vol. 10 1985, pp. 169–79.

    Article  Google Scholar 

  63. S. Masubuchi and S. Kazama, Synth. Met., vol. 69 1995, pp. 315–16.

    Article  Google Scholar 

  64. S. Kivelson and A.J. Heeger, Synth. Met., vol. 22 1988, pp. 371–84.

    Article  Google Scholar 

  65. F. Shimizu, K. Mizoguchi, S. Masubuchi, and K. Kume, Synth. Met., vol. 69 1995, pp. 43–4.

    Article  Google Scholar 

  66. F. Shimizu, Thesis: Tokyo Metropolitan Univ., 1994.

    Google Scholar 

  67. D. Billaud, J. Ghanbaja, J.F. Marêché, E. McRae, and C. Goulon, Synth. Met., vol. 28 1989, pp. D147–54.

    Article  Google Scholar 

  68. P. Bernier, C. Fite, A. El-Khodary, F. Rachdi, K. Zniber, H. Bleier, and N. Coustel, Synth. Met.,vol 37 1990, pp. 41.

    Article  Google Scholar 

  69. F. Rachdi and P. Bernier, Phys. Rev., vol. B33, 1986, pp. 7817–19.

    ADS  Google Scholar 

  70. L. Kispert, J. Joseph, G.G. Miller, and R.H. Baughman, Mol. Cryst. Liq. Cryst., vol. 106 1984, pp.418.

    Article  Google Scholar 

  71. P. Lauginie, H. Estrade, J. Conard, D. Guerard, P. Lagrange, and M. El Makrini, Physica B & C, vol. 99 1980, pp. 514–20.

    Article  ADS  Google Scholar 

  72. K. Tanigaki, M. Kosaka, T. Manako, Y. Kubo, I. Hirosawa, K. Uchida, and K. Prassides, Chem. Phys. Lett., vol. 240 1995, pp. 627.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Tokyo

About this paper

Cite this paper

Mizoguchi, K. (1996). Microscopic and Anisotropic Dynamics of Spin Carriers with/without Charge. In: Kajimura, K., Kuroda, Si. (eds) Materials and Measurements in Molecular Electronics. Springer Proceedings in Physics, vol 81. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68470-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68470-1_6

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68472-5

  • Online ISBN: 978-4-431-68470-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics