Microscopic and Anisotropic Dynamics of Spin Carriers with/without Charge

  • Kenji Mizoguchi
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 81)


Electron spin resonance (ESR) studies are reviewed, specifically focusing on an experimental parameter of frequency applied to organic conductive materials. By analyzing the ESR linewidth and/or the spin-lattice relaxation rate measured in a wide frequency range such as several MHz to 24 GHz, one can obtain a frequency spectrum of spin motion that gives characteristic parameters of such motion, anisotropic diffusion rates. The first example is a dynamics of so-called “neutral soli-ton” in trans-polyacetylene, which is a topological defect having spin half but no charge. In the case of polarons and/or conduction electrons in conducting materials, the dynamics of spin is equivalent to that of the charged carriers responsible for the electrical conduction. Polyaniline (PANI) and polythiophene (PT) are reviewed as examples of the conducting case with a quasi-one-dimensional electronic state. Recent development of this technique suggesting a new relaxation mechanism will be briefly mentioned.


Electron Spin Resonance Relaxation Rate Electron Spin Resonance Signal Spin Dynamic Larmor Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Mizoguchi, Jpn. J. Appl. Phys., vol. 34, 1995, pp. 1–19.ADSCrossRefGoogle Scholar
  2. [2]
    D. Lubzens, M.R. Shanabarger, and S. Schultz, Phys. Rev. Lett., vol. 29, 1972, pp. 1387.ADSCrossRefGoogle Scholar
  3. [3]
    D.R. Fredkin and R. Freedman, Phys. Rev. Lett., vol. 29, 1972, pp. 1390–3.ADSCrossRefGoogle Scholar
  4. [4]
    R. Freedman and D.R. Fredkin, Phys. Rev., vol. Bll, 1975, pp. 4847–58.Google Scholar
  5. [5]
    C.A. Sholl, J. Phys. C, vol. 14, 1981, pp. 447.ADSCrossRefGoogle Scholar
  6. [6]
    M.A. Butler, L.R. Walker, and Z.G. Soos, J. Chem. Phys., vol. 64, 1976, pp. 3592.ADSCrossRefGoogle Scholar
  7. [7]
    K. Mizoguchi and S. Kuroda, Magnetic Properties of Conducting Polymers, in Handbook of Organic Conductive Molecules and Polymers, ed. by H.S. Nalwa, John Wiley & Sons, Sussex, 1996, in press.Google Scholar
  8. [8]
    M. Nechtschein, Electron spin dynamics, in Handbook of Conducting Polymers,ed. by T. Skotheim, Marcel Dekker, New York, 1996, in press.Google Scholar
  9. [9]
    A. Abragam, The Principles of Nuclear Magnetism, Oxford Univ. Press, Oxford, 1961.Google Scholar
  10. [10]
    G. Soda, D. Jerome, M. Weger, J. Alizon, G. Gallice, H. Robert, J.M. Fabre, and L. Girai, J. de Phys., vol. 38 1977, pp. 931–48.CrossRefGoogle Scholar
  11. [11]
    W.G. Clark, K. Glover, M.D. Lan, and L.J. Azevedo, J. Phys. Colloq., vol. 44 1983, C3 pp. 1493–9.Google Scholar
  12. [12]
    K. Mizoguchi, Makromol. Chem., Macromol. Symp., vol. 37 1990, pp. 53–66.CrossRefGoogle Scholar
  13. [13]
    K. Mizoguchi, K. Kume, and H. Shirakawa, Mol. Cryst. Liq. Cryst., vol. 118 1985, pp. 45962.Google Scholar
  14. [14]
    J.S. Hyde, W. Froncisz, and T. Oies, J. Mag. Res., vol. 82 1989, pp. 223.CrossRefGoogle Scholar
  15. [15]
    K. Mizoguchi, K. Kume, and H. Shirakawa, Solid St. Commun., vol. 50 1984, pp. 213–18.ADSCrossRefGoogle Scholar
  16. [16]
    K. Mizoguchi, K. Kume, S. Masubuchi, and H. Shirakawa, Solid St. Commun., vol. 59 1986, pp. 465–8.ADSCrossRefGoogle Scholar
  17. [17]
    K. Mizoguchi, K. Kume, and H. Shirakawa, Synth. Met., vol. 17 1987, pp. 439–45.CrossRefGoogle Scholar
  18. [18]
    K. Mizoguchi, S. Komukai, T. Tsukamoto, K. Kume, M. Suezaki, K. Akagi, and H. ShirakawaSynth. Met. vol. 28 1989, pp. D393–8.CrossRefGoogle Scholar
  19. [19]
    K. Mizoguchi, S. Masubuchi, K. Kume, K. Akagi, and H. Shirakawa, Phys. Rev., vol. B51 1995, pp. 8864–73.ADSGoogle Scholar
  20. [20]
    B.R. Weinberger, E. Ehrenfreund, A. Pron, A.J. Heeger, and A.G. MacDiarmid, J. Chem. Phys., vol. 72 1980, pp. 4749–55.ADSCrossRefGoogle Scholar
  21. [21]
    M. Nechtschein, F. Devreux, R.L. Greene, T.C. Clarke, and G.B. Street, Phys. Rev. Lett., vol. 44 1980, pp. 356–9.ADSCrossRefGoogle Scholar
  22. [22]
    K. Holczer, J.P. Boucher, F. Devreux, and M. Nechtschein, Phys. Rev., vol. B23 1981, pp. 1051–63.ADSGoogle Scholar
  23. [23]
    M. Nechtschein, F. Devreux, F. Genoud, M. Guglielmi, and K. Holczer, Phys. Rev., vol. B27 1983, pp. 61–78.ADSGoogle Scholar
  24. [24]
    W.G. Clark, K. Glover, G. Mozurkewich, S. Etemad, and M. Maxfield, Mol. Cryst. Liq. Cryst., vol. 117 1985, pp. 447.CrossRefGoogle Scholar
  25. [25]
    C.P. Slichter, Principles of Magnetic Resonance, vol. 1 3rd ed. Springer, Berlin, Heidelberg, 1989.Google Scholar
  26. [26]
    K. Mizoguchi, H. Sakurai, F. Shimizu, S. Masubuchi, and K. Kume, Synth. Met., vol. 68 1995, pp.239–42.CrossRefGoogle Scholar
  27. [27]
    K. Mizoguchi, K. Kume, S. Masubuchi, and H. Shirakawa, Synth. Met., vol. 17 1987, pp. 405–11.CrossRefGoogle Scholar
  28. [28]
    S. Kuroda, M. Tokumoto, N. Kinoshita, and H. Shirakawa, J. Phys. Soc. Jpn., vol. 51 1982, pp. 693–4.ADSCrossRefGoogle Scholar
  29. [29]
    S. Kuroda and H. Shirakawa, Phys. Rev., vol. B35 1987, pp. 9380–2.ADSGoogle Scholar
  30. [30]
    S. Kuroda, Int. J. Mod. Phys. B, vol. 9 1995, pp. 221–60.ADSCrossRefGoogle Scholar
  31. [31]
    Y. Wada and J.R. Schrieffer, Phys. Rev., vol. B18 1978, pp. 3897–912.MathSciNetADSGoogle Scholar
  32. [32]
    M. Ogata and Y. Wada, Prog. Theor. Phys. Suppl.,1988, pp. 115–27.Google Scholar
  33. [33]
    K. Maki, Phys. Rev.,vol. B26 1982, pp. 4539–42.ADSGoogle Scholar
  34. [34]
    K. Maki, Phys. Rev.,vol. B26 1982, pp. 2187–91.ADSGoogle Scholar
  35. [35]
    K. Maki, Phys. Rev.,vol. B26 1982, pp. 2181–6.ADSGoogle Scholar
  36. [36]
    S. Jeyadev and E.M. Conwell, Phys. Rev., vol. B36 1987, pp. 3284–93.ADSGoogle Scholar
  37. [37]
    Y. Wada, Progr. Theor. Phys. Suppl., vol. 113 1993, pp. 1–23.MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    F. Devreux, Phys. Rev.,vol. B25 1982, pp. 6609.ADSGoogle Scholar
  39. [39]
    S. Kivelson, Phys. Rev.,vol. B25 1982, pp. 3798–21.ADSGoogle Scholar
  40. [40]
    D. Baeriswyl, D.K. Campbell, and S. Mazumdar, An overview of the theory of ic-conjugated polymers, in Conjugated Conducting Polymers, vol. 102 ed. by H.G. Kiess, Springer-Verlag, Berlin, Heidelberg, 1992, pp. 107.Google Scholar
  41. [41]
    K. Mizoguchi, M. Nechtschein, J.-P. Travers, and C. Menardo, Phys. Rev. Lett.,vol. 63 1989, pp. 66–9.ADSCrossRefGoogle Scholar
  42. [42]
    K. Mizoguchi, M. Nechtschein, J.P. Travers, and C. Menardo, Synth. Met., vol. 29 1989, pp. E417–24.CrossRefGoogle Scholar
  43. [43]
    K. Mizoguchi, M. Nechtschein, and J.-P. Travers, Synth. Met., vol. 41 1991, pp. 113–16.CrossRefGoogle Scholar
  44. [44]
    K. Mizoguchi and K. Kume, Solid St. Commun., vol. 89 1994, pp. 971–5.ADSCrossRefGoogle Scholar
  45. [45]
    A.G. MacDiarmid, J.C. Chiang, M. Halpern, W.S. Huang, S.L. Mu, N.L.D. Somasiri, W.Q. Wu, and S.I. Yaniger, Mol. Cryst. Liq. Cryst., vol. 121 1985, pp. 173.CrossRefGoogle Scholar
  46. [46]
    M. Reghu, Y. Cao, D. Moses, and A.J. Heeger, Synth. Met., vol. 57 1993, pp. 5020–5.CrossRefGoogle Scholar
  47. [47]
    A.P. Monkman and P.N. Adams, Synth. Met., vol. 41–43 1991, pp. 627.CrossRefGoogle Scholar
  48. [48]
    J.P. Pouget, M. Laridjani, M.E. Jozefowicz, A.J. Epstein, E.M. Scherr, and A.G. MacDiarmid, Synth. Met., vol. 51 1992, pp. 95–101.CrossRefGoogle Scholar
  49. [49]
    J.P. Pouget, Z. Oblakowski, Y. Nogami, P.A. Albouy, M. Laridjani, O.E.J. Min, A.G. MacDiarmid, J. Tsukamoto, T. Ishiguro, and A.J. Epstein, Synth. Met., vol. 65 1994, pp. 131–40.CrossRefGoogle Scholar
  50. [50]
    J.P. Pouget, C.-H. Hsu, A.G. MacDiarmid, and A.J. Epstein, Synth. Met., vol. 69 1995, pp. 119–20.CrossRefGoogle Scholar
  51. [51]
    C. Jeandey, J.P. Boucher, F. Ferrieu, and M. Nechtschein, Solid St. Commun., vol. 23 1977, pp. 673.ADSCrossRefGoogle Scholar
  52. [52]
    A.J. Epstein, J.M. Ginder, F. Zuo, R.W. Bigelow, H.-S. Woo, D.B. Tanner, A.F. Richter, W.-S. Huang, and A.G. MacDiarmid, Synth. Met., vol. 18 1987, pp. 303–9.CrossRefGoogle Scholar
  53. [53]
    K. Mizoguchi and K. Kume, Synth. Met., vol. 69 1995, pp. 241–2.CrossRefGoogle Scholar
  54. [54]
    E. Houzé and M. Nechtschein, submitted to Phys. Rev. B.Google Scholar
  55. [55]
    E.J. Oh, Y. Min, J.M. Wiesinger, S.K. Manohar, E.M. Scherr, P.J. Prest, A.J. MacDiarmid, and A.J. Epstein, Synth. Met., vol. 55–57 1993, pp. 977.CrossRefGoogle Scholar
  56. [56]
    K. Mizoguchi, M. Honda, N. Kachi, F. Shimizu, H. Sakamoto, K. Kume, S. Masubuchi, and S. Kazama, Solid St. Commun., vol. 96 1995, pp. 333–7.ADSCrossRefGoogle Scholar
  57. [57]
    K. Mizoguchi, M. Honda, S. Masubuchi, S. Kazama, and K. Kume, Jpn. J. Appl. Phys.,vol. 33 1994, pp. 971–5.CrossRefGoogle Scholar
  58. [58]
    S. Masubuchi, S. Kazama, K. Mizoguchi, H. Honda, K. Kume, R. Matsushita, and T. Matsuyama, Synth. Met., vol. 57 1993, pp. 4962–7.CrossRefGoogle Scholar
  59. [59]
    R.J. Elliott, Phys. Rev., vol. 96 1954, pp. 266–79.ADSMATHCrossRefGoogle Scholar
  60. [60]
    S. Masubuchi and S. Kazama, Synth. Met, vol. 74 1995, pp. 151–8.CrossRefGoogle Scholar
  61. [61]
    K. Mizoguchi, K. Misoo, K. Kume, K. Kaneto, T. Shiraishi, and K. Yoshino, Synth. Met., vol. 18 1987, pp. 195–8.CrossRefGoogle Scholar
  62. [62]
    F. Moraes, D. Davidov, M. Kobayashi, T.C. Chung, J. Chen, A.J. Heeger, and F. Wudl, Synth. Met., vol. 10 1985, pp. 169–79.CrossRefGoogle Scholar
  63. [63]
    S. Masubuchi and S. Kazama, Synth. Met., vol. 69 1995, pp. 315–16.CrossRefGoogle Scholar
  64. [64]
    S. Kivelson and A.J. Heeger, Synth. Met., vol. 22 1988, pp. 371–84.CrossRefGoogle Scholar
  65. [65]
    F. Shimizu, K. Mizoguchi, S. Masubuchi, and K. Kume, Synth. Met., vol. 69 1995, pp. 43–4.CrossRefGoogle Scholar
  66. [66]
    F. Shimizu, Thesis: Tokyo Metropolitan Univ., 1994.Google Scholar
  67. [67]
    D. Billaud, J. Ghanbaja, J.F. Marêché, E. McRae, and C. Goulon, Synth. Met., vol. 28 1989, pp. D147–54.CrossRefGoogle Scholar
  68. [68]
    P. Bernier, C. Fite, A. El-Khodary, F. Rachdi, K. Zniber, H. Bleier, and N. Coustel, Synth. Met.,vol 37 1990, pp. 41.CrossRefGoogle Scholar
  69. [69]
    F. Rachdi and P. Bernier, Phys. Rev., vol. B33, 1986, pp. 7817–19.ADSGoogle Scholar
  70. [70]
    L. Kispert, J. Joseph, G.G. Miller, and R.H. Baughman, Mol. Cryst. Liq. Cryst., vol. 106 1984, pp.418.CrossRefGoogle Scholar
  71. [71]
    P. Lauginie, H. Estrade, J. Conard, D. Guerard, P. Lagrange, and M. El Makrini, Physica B & C, vol. 99 1980, pp. 514–20.ADSCrossRefGoogle Scholar
  72. [72]
    K. Tanigaki, M. Kosaka, T. Manako, Y. Kubo, I. Hirosawa, K. Uchida, and K. Prassides, Chem. Phys. Lett., vol. 240 1995, pp. 627.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1996

Authors and Affiliations

  • Kenji Mizoguchi
    • 1
  1. 1.Dept. of Phys.Tokyo Metropolitan UniversityHachi-oji, TokyoJapan

Personalised recommendations