Spectroscopy Methods for Low-Dimensional Systems

  • Minko Balkanski
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 81)


Continuous progress in Solid State Physics and Materials Science has developed through a permanent interplay between theory and experiments in which spectroscopy is taking a major part. Absorption and Reflectivity spectroscopy is a key method for determining band gaps, necessary for establishing of electronic band structures and phonon dispersion relations which are the basic characteristics of materials.


Local Density Approximation Bucky Ball Carbon Tubule Phonon Dispersion Relation Electronic Energy Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.F. Wallis and M. Balkanski, Many Body Aspects of Solid State Spectroscopy, North-Holland (Amsterdam), 1986.Google Scholar
  2. [2]
    M. Dresselhaus, G. Dresselhaus, R. Saito and P C Ekland, C60-Related Balls and Fibers, in Elementary Excitations in Solids A Special Volume in Honor of Professor Minko Balkanski, edited by J.L. Birman, C. Sébenne and R.F. Wallis, North-Holland (Amsterdam), 1992.Google Scholar
  3. [3]
    Marvin L. Cohen, Density Functional Theory and Pseudopotentials: a Panacea for Calculating Properties of Materials, Int. J. of Quantum Chem. (to be published).Google Scholar
  4. [4]
    S. lijima, Nature 354, 1991, pp. 56.ADSCrossRefGoogle Scholar
  5. [5]
    C. Julien and M Balkanski, Is the Rigid Band Model Applicable in Lithium Intercalation Compounds, Solid State Ionics III, Materials Research Society Symposium Proceedings, Vol. 293, 1992, pp. 27–37.CrossRefGoogle Scholar
  6. [6]
    Y. Miyamoto, A. Rubio, M.L. Cohen and S.G. Lonie, Chiral Tubules of Hexagonal BC2N, Phys. Rev. B50, 1949, pp. 4976.Google Scholar
  7. [7]
    M. Balkanski, Energy Transport in Semiconductors, J. Phys. Chem. Solids, Vol. 8, 1959, pp. 179–181.ADSCrossRefGoogle Scholar
  8. J.J. Hopfield, Aspects of Polaritons, Proc. Int. Conf. Phys. of Semicond., Kyoto. 1966: J. Phys. Soc. Japan 21, 1966, pp. 77–88.Google Scholar
  9. [8]
    E. Burstein and C. Weisbuch, Confined Electrons and Photons, Plenum Press, New-York, 1995.CrossRefGoogle Scholar
  10. [9]
    H. Yohoyama, Physics and Device Applications of Optical Microcavities, Source 256, 1992, pp. 66.Google Scholar
  11. [10]
    E. Yablonovitch, Photonic Bandgap Structures, J. Opt. Soc. Am. B 10, 1993, pp. 283–297.ADSGoogle Scholar
  12. [11]
    M. Balkanski, K.P. Jain, R. Beserman and M. Jouanne, Theory of Interference Distortion of Raman Scattering Line Shapes in Semiconductors, Phys. Rev., Vol. B 12 (1975), pp. 4328–4337.Google Scholar
  13. [12]
    S. Nakashima, Raman Intensity Profiles and Crystal Structures, in Elementary Excitations in Solids, Special Volume in Honor Professor Minko Balkanski, edited by J.L. Birman, C. Sébenne and R.F. Wallis, North-Holland (Amsterdam), 1992, pp. 167–195.Google Scholar
  14. [13]
    C. Julien, I. Samaras, O. Gorochov and M. Ghorayeb, Optical and Electrical-Transport Studies on Lithium-Intercalated TiS2, Phys. Rev. Vol. 45 (1992), pp. 13390–13395.CrossRefGoogle Scholar
  15. [14]
    M. Balkanski, P. Gomes da Costa and R.F. Wallis, Electron Energy Bands and Lattice Dynamics of Pure and Lithium Intercalated InSe, Phys. Status Solidi (to be published).Google Scholar
  16. [15]
    Ping Zhou, K.A. Wang, A.M. Rao, P.C. Ekland, G. Dresselhaus and M.S. Dresselhaus, Phys. Rev. Vol. B 45, 1992, pp. 10838–10840.CrossRefGoogle Scholar
  17. [16]
    M.S. Dresselhaus, G. Dresselhaus and R. Saito, Phys. Rev., Vol. B 45, 1992, pp. 6234–6242.ADSCrossRefGoogle Scholar
  18. [17]
    R. Saito, M. Fujita, G. Dresselhaus and M.S. Dresselhaus (unpublished).Google Scholar
  19. [18]
    P.A.M. Dirac, Proc. Cambridge Philos. Soc., Vol. 26, 1930, pp. 376.ADSMATHCrossRefGoogle Scholar
  20. [19]
    E. Fermi, Nuovo Cimento, Vol. 11, 1934, pp. 157.MATHCrossRefGoogle Scholar
  21. [20]
    M.L. Cohen and J.R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors, Springer-Verlag, Berlin, 1988.CrossRefGoogle Scholar
  22. [21]
    N. Hamada, S. Sawada and A. Oshiyama, Phys. Rev. Lett., Vol. 68, 1992, pp. 1579.ADSCrossRefGoogle Scholar
  23. [22]
    K. Kunc and R. Zeyher, Europhys. Lett. 7, 1988, pp. 611.ADSCrossRefGoogle Scholar
  24. [23]
    Y. Miyamoto, A. Rubio, X. Blase, M.L. Cohen and S.G. Lonie, Ionic Cohesion and Electronic Doping of thin Carbon Tubules with Alkali Atoms, Phys. Rev. Lett., Vol. 74, 1995, pp. 2993.ADSCrossRefGoogle Scholar
  25. [24]
    L. Langer, V. Bayot, E. Grivei, J.P. Issi, J.P. Heremans, C.H. Ock, L. Stockman, C. Van Hacsendonck and Y. Bruynsaraede, Quantum Transport in Multiwalled Carbon Nanotube, Phys. Rev. Lett. 76, 1996, pp. 479–482.ADSCrossRefGoogle Scholar
  26. [25]
    D. El-Khatouri, A. Khater, M. Balkanski, C Julien and J.P. Guesdon, Two-Dimensional Conductivity in the Layered Semiconductor InSe at Low Temperatures Owin to Weak Localisation, J. Appl. Phys. 66, 1989, pp. 2049–2051.ADSCrossRefGoogle Scholar
  27. D. El-Khatouri, A. Khater, M. Balkanski and J. Tuchendler, Two-Dimensional Quantum Corrections to the Magnetoconductance of InSe at Low Temperatures Owing to Weak Localization, J. Appl. Phys. 6, 1989, pp. 5409–5411CrossRefGoogle Scholar
  28. [26]
    L. Chico, V.H. Grespi, L.X. Benedict, S.G. Lonie and M.L. Cohen, Pure carbon nanoscale devices: nanotube heterojunctions (to be published).Google Scholar

Copyright information

© Springer-Verlag Tokyo 1996

Authors and Affiliations

  • Minko Balkanski
    • 1
  1. 1.Laboratoire de Physique des SolidesUniversité Pierre et Marie CurieParis Cédex 05France

Personalised recommendations