Advertisement

π-d interaction in phthalocyanine conductors

  • Kyuya Yakushi
  • Toshihiro Hiejima
  • Hideo Yamakado
Part of the Springer Proceedings in Physics book series (SPPHY, volume 81)

Abstract

Partially oxidized phthalocyanine conductors such as CoPc(AsF6)0.5 and NiPc(AsF6)0.5consist of one-dimensional double chain comprising a transition-metal and organic macrocycle chains. Each of these chains generates a narrow d-band and a wide π-band. The d-band is located near the Fermi level of the π-conduction-band. The interplay between these π- and d-bands will be introduced. The first examples of the interplay is the influence of the magnetic moments of unpaired d-electrons at the Co site to the itinerant π-holes on Pc chain. The exchange coupling with these magnetic moments suppresses the coherent motion of π-holes in CoPc(AsF6)0.5. This conclusion was derived from the comparative study of the isostructural conductors, non-magnetic NiPc(AsF6)0.5 and magnetic CoPc(AsF6)0.5. Another example is the transfer of holes from π-to d-band which is induced by high pressure. This charge transfer occurs at 0.5 GPa and continues up to 6 GPa in NiPc(AsF6)0.5.. The same phenomenon was observed in CoPc(AsF6)0.5 as well. A metal-nonmetal transition is induced by the pressure at which the charge transfer begins in NiPc(AsF6)0.5.

Keywords

Pressure Dependence Interband Transition Plasmon Absorption Counter Anion Organic Conductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Yamakado, T. Ida, A. Ugawa, K. Yakushi, K. Awaga, Y. Maruyama, K. Imaeda, and H. Inokuchi, Synth. Met. 62, 169 (1994), and references cited in this paper.Google Scholar
  2. [2]
    F. W. Kutzler and D. E. Ellis, J. Chem. Phys. 84, 1033 (1986).ADSCrossRefGoogle Scholar
  3. [3]
    K. Yakushi, H. Yamakado, T. Ida, and A. Ugawa, Solid State Commun. 78, 919 (1991).ADSCrossRefGoogle Scholar
  4. [4]
    K. Yakushi, H. Yamakado, M. Yoshitake, N. Kosugi, H. Kuroda, T. Sugano, M. Kinoshita, A. Kawamoto, and J. Tanaka, Bull. Chem. Soc. Jpn. 62, 687 (1989).CrossRefGoogle Scholar
  5. [5]
    K. Mortensen, E. M. Conwell, and J. M. Fabre, Phys. Rev. B 28, 5856 (1983), and C. Coulon, P. Delhaes, S. Frandrois, R. Lagnier, E. Bonjour, and J. M. Fabre, J. Phys. 43, 1059 (1982).CrossRefGoogle Scholar
  6. [6]
    J. U. von Schutz, M. Bah, H. J. Gross, U. Langohr, H.-P. Werner, H. C. Wolf, D. Schmeisser, K. Graf, W. Gopel, P. Erk, H. Meixner, and S. Hunig, Synth. Met. 27, B249 (1988).CrossRefGoogle Scholar
  7. [7]
    T. Mori, H. Inokuchi, a. Kobayashi, R. Kato, and H. Kobayashi, Phys. Rev. B, 38, 5913 (1988).ADSCrossRefGoogle Scholar
  8. [8]
    H. Basista, D. A. Bonn, T. Timusk, J. Voit, D. Jerome, and K. Bechgaard, Phys. Rev. B 42, 4088 (1990).ADSCrossRefGoogle Scholar
  9. [9]
    C. S. Jacobsen, D. B. Tanner, and K. Bechgaard, Phys. Rev. B 28, 7019 (1983).ADSCrossRefGoogle Scholar
  10. [10]
    K. Yakushi, S. Aratani, K. Kikuchi, H. Tajima, H. Kuroda, Bull. Chem. Soc. Jpn. 59, 363 (1986).CrossRefGoogle Scholar
  11. [11]
    H. Kuroda, K. Yakushi, H. Tajima, A. Ugawa, M. Tamura, Y. Okawa, A. Kobayahi, R. Kato, and H. Kobayashi, Synth. Met. 27, A491 (1988), and K. Kornelson, J. E. Eldrige, H. H. Wang, and J. M. Williams, Phys. Rev. B 44, 5235 (1991).ADSCrossRefGoogle Scholar
  12. [12]
    K. Yakushi, A. Ugawa, G. Ojima, T. Ida, H. Tajima, H. Kuroda, A. Kobayashi, R. Kato, and H. Kobayashi, Mol. Cryst. Liq. Cryst. 181, 217 (1990).Google Scholar
  13. [13]
    M.Yoshitake, K.Yakushi, H.Kuroda, A.Kobayashi, R.Kato, and H.Kobayashi, Bull. Chem. Soc. Jpn. 61, 1115 (1988).CrossRefGoogle Scholar
  14. [14]
    C. Coulon, P. Delhaes, S. Frandrois, R. Lagnier, E. Bonjour, and J. M. Fabre, J. Phys. 43, 1059 (1982).CrossRefGoogle Scholar
  15. [15]
    H.P. Werner, J. U. von Shutz, H. C. Wolf, R. Kremer, M. Gehrke, A. Aumuller, P. Erk, and S. Hunig, Solid State Commun. 65, 809 (1988).ADSCrossRefGoogle Scholar
  16. [16]
    M.Y.Ogawa, J.Martinsen, S.M.Palmer, J.L.Stanton, J.Tanaka, R.L.Greene, B.M.Hoffman, and J.A.Ibers, J. Am. Chem. Soc. 109, 1115 (1987).CrossRefGoogle Scholar
  17. [17]
    A.Mishima, Synth. Met. 55–57, 1815 (1993).Google Scholar
  18. [18]
    G. A. Willams, B. N. Figgis, and R. Mason, J. Chem. Soc. Dalton 734 (1981).Google Scholar
  19. [19]
    K. Yakushi, T. Ida, A. Ugawa, H. Yamakado, H. Ishii and H. Kuroda, J. Phys. Chem., 95 7637 (1991).CrossRefGoogle Scholar
  20. [20]
    G. C. Papavassiliou, Prog. Solid St. Chem. 12, 185 (1979).Google Scholar
  21. [21]
    Handbook of Chemistry Vol. II“, ed. by K. Hata, Chemical Society of Japan, Tokyo, (1984), p556.Google Scholar
  22. [22]
    T. Hiejima and K. Yakushi, J. Chem. Phys. 103, 3950 (1995).ADSCrossRefGoogle Scholar
  23. [23]
    B. Welber, P. E. Seiden and P.M. Grant, Phys. Rev. B, 18 2692 (1978).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1996

Authors and Affiliations

  • Kyuya Yakushi
    • 1
  • Toshihiro Hiejima
    • 1
  • Hideo Yamakado
    • 1
  1. 1.Institute for Molecular Science and Graduate University for Advanced StudiesOkazaki, Aichi 444Japan

Personalised recommendations