Optical Properties of Low-Dimensional Molecular Crystals and LB Films

  • V. M. Yartsev
Part of the Springer Proceedings in Physics book series (SPPHY, volume 81)


A general theory for calculating spectroscopic properties of low-dimensional molecular crystals is developed on the basis of the cluster approach. Electronic correlations and the coupling of electrons to intramolecular vibrations are explicitly taken into account. The relative role of different model parameters is investigated and both effects are found to be equally important. This result predicts a possibility to modify physical properties via the choice of constituents, stoichiometry, or external conditions (temperature, pressure, photoexcitation, etc.). The theory explains well the experimental visible and infrared spectra and proves that the optical response in molecular charge-transfer crystals has a local nature. Charge-transfer salts prepared in the form of Langmuir-Blodgett (LB) films are also discussed. The cluster approach analysis of the experimental absorption spectra of LB films is shown to provide information about molecular organization and can offer a way to modify the optical response as required by specific practical applications.


Infrared Spectrum Spectroscopic Property Molecular Crystal Equilibrium Charge Intramolecular Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Kamaras, K. Holczer, A. Janossy, Infrared Spectra of the Neutron Irradiated Quasi-OneDimensional Charge Transfer Salts TEA(TCNQ)2 and Qn(TCNQ)2, Phys. Status Solidi (b), Vol. 102, 1980, pp. 467–474.ADSCrossRefGoogle Scholar
  2. [2]
    V.M. Yartsev, R. Swietlik, Infrared Properties of Quasi-One-Dimensional Organic Semiconductors, Reviews of Solid State Science, Vol. 4, 1990, pp. 69–117.Google Scholar
  3. [3]
    L.R. Melby, R.J. Harder, B. Welber, F.B. Kaufman, P.E. Seiden, Substituted Quinodimethans. II. Anion-Radical Derivatives and Complexes of 7,7,8,8-Tetracyanoquinodimethan, J. Chem. Soc, Vol. 84, 1962, pp. 3374–3387.CrossRefGoogle Scholar
  4. [4]
    J.R. Ferraro, J.M. Williams. Introduction to Synthetic Electrical Conductors, Academic Press, New York, 1987.Google Scholar
  5. [5]
    A. Graja. Low-Dimensional Organic Conductors, World Scientific, Singapore, 1992.CrossRefGoogle Scholar
  6. [6]
    A. Ruaudel-Teixier, M. Vandevyver, A. Barraud, Novel Conducting LB Films, Molec. Cryst. Liq. Cryst., Vol. 120, 1985, pp. 319–322.CrossRefGoogle Scholar
  7. [7]
    A. Graj a, Optical Properties, Organic Conductors. Fundamentals and Applications, Marcel Dekker, New York, 1994, pp. 229–267.Google Scholar
  8. [8]
    P. Delhaes, V.M. Yartsev, Electronic and Spectroscopic Properties of Conducting Langmuir-Blodgett Films, Spectroscopy of New Materials, John Wiley & Sons, Chichester, 1993, pp. 199–289.Google Scholar
  9. [9]
    G.R. Andersen, J.P. Devlin, Electron Oscillation Effects in the Vibrational Spectra of Tetracyanoquinodimethane Ion Radical Salts, J. Phys. Chenz., Vol. 79, 1975, pp. 1100–1102.CrossRefGoogle Scholar
  10. [10]
    E.E. Ferguson, F.A. Matsen, Enhancement of Infrared Absorption Bands of Charge Transfer Complexes, J. Chem Phys, Vol. 29, 1958, pp. 105–107.ADSCrossRefGoogle Scholar
  11. [11]
    J. Richard, P. Delhaes, M. Vandevyver, Electronic and Spectroscopic Properties of Conducting Langmuir-Blodgett Films Based on Semi-amphiphilic TCNQ Salts: a Comprehensive Comparison with Bulk Crystalline Molecular Conductors: a Review, New J Chem., Vol. 15, 1991, pp. 137–147.Google Scholar
  12. [12]
    R. Bozio, C. Pecile, Charge Transfer Crystals and Molecular Conductors, Spectroscopy of Advanced Materials, John Wiley & Sons, Chichester, 1991, pp. 1–86.Google Scholar
  13. [13]
    M.J. Rice, V.M. Yartsev, C.S. Jacobsen, Investigation of the Nature of the Unpaired Electron States in the Organic Semiconductor MEM(TCNQ)2, Phys. Rev. B,Vol. 21, 1980, pp. 34373446.Google Scholar
  14. [14]
    N.O. Lipari, C.B. Duke, R. Bozio, A. Girlando, C. Pecile, A. Padva, Electron-Molecular Vibration Coupling in 7,7,8,8-Tetracyano-p-quinodimethane (TCNQ), Chem. Phys. Lett., Vol 44, 1976, pp. 236–240.ADSCrossRefGoogle Scholar
  15. [15]
    P.J. Strebel, Z.G. Soos, Theory of Charge Transfer in Aromatic Donor-Acceptor Crystals, J. Chem. Phys., Vol. 53, 1970, pp. 4077–4090.ADSCrossRefGoogle Scholar
  16. [16]
    J. Hubbard, Generalized Wigner Lattices in One Dimension and Some Applications to Tetracyanoquinodimethane (TCNQ) Salts, Phys. Rev. B, Vol. 17, 1978, pp. 494–505.ADSCrossRefGoogle Scholar
  17. [17]
    M.J. Rice, Towards the Experimental Determination of the Fundamental Microscopic Parameters of Organic Ion-Radical Compounds, Solid State Commun., Vol. 31, 1979, pp. 9398.CrossRefGoogle Scholar
  18. [18]
    R. Bozio, A. Girlando, C. Pecile, Correlation between Infrared Spectra and Magnetic and Optical Properties of Potassium Chloranil. Effects of Phase Transition and Solvation Processes, Chem. Phys., Vol. 21, 1977, pp. 257–263.CrossRefGoogle Scholar
  19. [19]
    S. Matsuzaki, V.M. Yartsev, Charge Distribution in Mixed-Valence Trimer, Solid State Commun., Vol. 89, 1994, pp. 941–944.ADSCrossRefGoogle Scholar
  20. [20]
    V.M. Yartsev, Optical Properties of Quasi-One-Dimensional Molecular Crystals with Non-Equilibrium Charge Carriers, J. Appl. Spectrosc., Vol. 45, 1986, pp. 744–748.ADSCrossRefGoogle Scholar
  21. [21]
    V.M. Yartsev, Electron-Molecular Vibration Coupling in Trimerized Organic Ion-Radical Semiconductors, Phys. Status Solidi (b), Vol. 112, 1982, pp. 279–287.ADSCrossRefGoogle Scholar
  22. [22]
    J.B. Torrance, The Difference between Metallic and Insulating Salts of Tetracyanoquinodimethane (TCNQ): How to Design an Organic Metal, Acc. Chem. Res. Vol. 12, 1979, pp. 79–86.CrossRefGoogle Scholar
  23. [23]
    V.M. Yartsev, Charge Transfer and Electron-Molecular Vibration Coupling in Tetramerized Quasi-1D Semiconductors, Phys. Status Solidi (b), Vol. 126, 1984, pp. 501–510.ADSCrossRefGoogle Scholar
  24. [24]
    A. Ruaudel-Teixier, M. Vandevyver, M. Roulliay, J.-P. Bourgoin, A. Barraud, M. Lequan, R.M. Leguan, A New Strategy for Building Conducting Langmuir-Blodgett Films, J Phys. D: Appl. Physs., Vol. 23, 1990, pp. 987–990.ADSCrossRefGoogle Scholar
  25. [25]
    V.M. Yartsev, J.-P. Bourgoin, P. Delhaes, M. Vandevyver, A. Barraud, Spectroscopic Properties of Conducting Langmuir-Blodgett Films Obtained by the “Homodoping Strategy”, J. Chem. Phys, Vol. 99, 1993, pp. 3092–3099.ADSCrossRefGoogle Scholar
  26. [26]
    D.B. Tanner, C.S. Jacobsen, A.A. Bright, A.J. Heeger, Infrared Studies of the Energy Gap and Electron-Phonon Interaction in Potassium-Tetracyanoquinodimethane (K-TCNQ), Phys. Rev. B, Vol. 16, 1977, pp. 3283–3290.ADSCrossRefGoogle Scholar
  27. [27]
    R. Swietlik, V.M. Yartsev, Infrared Spectra of Quasi-One-Dimensional Semiconductors with Tetramerized Stacks, Malec. Cryst. Lyq. Cryst, Vol. 230, 1993, pp. 375–380.Google Scholar
  28. [28]
    R. Swietlik, Infrared Spectra of Tetramerized Organic Semiconductors PrPht(TCNQ)2 and PrQuin(TCNQ)2–the Problem of ag Phonon Mode Splitting, Synth. Metals, Vol. 74, 1995, pp. 115–122.CrossRefGoogle Scholar
  29. [29]
    S. Matsuzaki, R. Kuwata, K. Toyoda, Raman Spectra of Conducting TCNQ Salts; Estimation of the Degree of Charge Transfer from Vibrational Frequencies, Solid State Commun., Vol. 33, 1980, pp. 403–405.ADSCrossRefGoogle Scholar
  30. [30]
    V.M. Yartsev, M.J. Rice, Conductivity Spectrum Fine Structure of One-Dimensional Organic Semiconductors, Phys. Stat. Solidi (b), Vol. 100, 1980, pp. K97 - K100.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1996

Authors and Affiliations

  • V. M. Yartsev
    • 1
  1. 1.Centro de FísicaInstituto Venezolano de Investigaciones Científicas (IVIC)CaracasVenezuela

Personalised recommendations