Comparative Study on Langmuir-Blodgett Films and Crystals based on TTF Derivatives with Long Alkyl Chains

  • Mitsuru Izumi
  • Hitoshi Ohnuki
Part of the Springer Proceedings in Physics book series (SPPHY, volume 81)


In the basic research of Langmuir-Blodgett (LB) films, most of the difficulties to deduce the inherent structural and physical properties come from the existence of many small regions with differing orientation as two dimensional (2D) domain plates in each monolayer. To overcome such difficulties we emphasize a strategy of studying the single crystal and the LB films which have the identical molecular organization. As an example, we show a series of comparative studies on a stable conducting LB films of [EDT-TTF(SC18)2]2I3 and its single crystal. The success of growth of the single crystals leads to a proposal of possible 3D model of molecular organization and clarification of the electronic states responsible for the conductivity.


Alkyl Chain Film Plane Molecular Assembly Molecular Organization Donor Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Roberts, Langmuir-Blodgett Films, Plenum Press, New York and London, 1990.Google Scholar
  2. [2]
    P. Delhaes, Lower Dimensional Systems and Molecular Electronics, ed. by R. M. Metzger, P. Day and G. C. Papavassiliou, NATO ASI Series B, Vol. 248, Plenum Press, New York, 1991 43.Google Scholar
  3. [3]
    R. H. Tredgold, The Physics of Langmuir-Blodgett Films, Rep. Prog. Phys., Vol. 50 1987, 1609.ADSCrossRefGoogle Scholar
  4. [4]
    L. B. Coleman, M. J. Cohen, D. J. Sandman, F. F. Yamagishi, A. F. Garito and A. J. Heeger, Solid State Commun., Vol. 12 (1973) 1125.ADSCrossRefGoogle Scholar
  5. [5]
    J. M. Williams, A. M. Kini, H. H. Wang, K. D. Carlson, U. Geiser, L. K. Montgomery, G. J. Pyrka, D. M. Watkins, J. M. Kommers, S. J. Boryshuk, A. V. Strievy Crouch, W. K. Kwok, J. E. Schirber, D. L. Overmyer, D. Jung and M.H. Whangbo, Inorg. Chem., Vol 29 1990, 3272.CrossRefGoogle Scholar
  6. [6]
    R. S. Mullikenad W. B. Person, Molecular Complexes (John Wiley & Sons, Inc.) 1969.Google Scholar
  7. [7]
    R. Bozio and C. Pecile, Charge Transfer Crystals and Molecular Conductors, Spectroscopy of Advanced Materials, ed. by R. J. H. Clark and R. E. Hester, Advances in Spectroscopy Vol. 19, John Wiley & Sons, 1991, 1.Google Scholar
  8. [8]
    P. Delhaes, Organic and Inorganic Low-Dimensional Crystalline Materials, ed. by P. Delhaes and M. Drillon, NATO, ASI Series B, Physics, Vol. 168, Plenum, New York, 1987Google Scholar
  9. [9]
    T. Ishiguro and K. Yamaji, Organic Superconductors, Springer Series in Solid State Sciences Vol. 88, Springer Verlag, Berlin, 1990.Google Scholar
  10. [10]
    P. Delhaes and L. Ducasse, Localized and Itinerant Molecular Magnetism, to be published in NATO, ASI Series, Plenum, New York, 1996.Google Scholar
  11. [11]
    M-H. Whangbo, J. M. Williams, A. J. Schultz, T. J. Emge and M. A. Beno, J. Am. Chem. Soc., Vol. 109, 1987, 90.CrossRefGoogle Scholar
  12. [12]
    A. Kini, The Physics and Chemistry of Organic Superconductors, Vol. 51, (Springer-Verlag, Berlin ) 1990 334.Google Scholar
  13. [13]
    A. Barraud, O. Kahn and J-P. Launay, Science et Technologie, no. 15, May (1989).Google Scholar
  14. [14]
    A. Ruaudel-Texier, M. Vandevyver and A. Barraud, Mol. Cryst. Liq. Cryst., 120 (1985) 319.CrossRefGoogle Scholar
  15. [15]
    T. Nakamura, M. Matsumoto, F. Takei, M. Tanaka, T. Sekiguchi, E. Manda and Y. Kawabata, Chem. Lett., 1986, 709.Google Scholar
  16. [16]
    S. A. Dhindsa, R. J. Ward, M. R. Bryce, Y. M. Lvov, H. S. Murno and M. C. Petty, Synth. Met., Vol. 35, 1990, 307;CrossRefGoogle Scholar
  17. A. S. Dhindsa, M. R. Bryce, H. Ancelin, M. C. Petty and J. Yarwood, LANGMUIR, 6, 1990 1680;CrossRefGoogle Scholar
  18. M. R. Bryce and M. C. Petty, NATURE, Vol. 374, No. 27, 1995, 771.ADSCrossRefGoogle Scholar
  19. [17]
    F. Rustichelli, S. Dante, P. Mariani, I. V. Myagkov and V. I. Troitsky, Thin Solid Films, Vol. 242, 1994, 267;ADSCrossRefGoogle Scholar
  20. V. I. Troitsky, T. S. Berzina, A. Petrigliano and C. Nicolini, Thin Solid Films,in apress.Google Scholar
  21. [18]
    T. Suzuki, H. Yamochi, G. Srdanov, K. Hinkelmann and F. Wudl,J. Am. Chem. Soc., Vol. 111, 1989, 3108;CrossRefGoogle Scholar
  22. T. Nakamura, G. Yunome, R. Azumi, M. Tanaka, H. Tachibana, M. Matsumoto, S. Horiuchi, H. Yamochi and G. Saito, J. Phys. Chem., Vol. 98, 1994, 1882.CrossRefGoogle Scholar
  23. [19]
    V. M. Yartsev and C. S. Jacobsen, Phys. Rev. B, Vol. 24, No. 10 1981 6167.ADSCrossRefGoogle Scholar
  24. [20]
    J-P. Bourgoin, A. Ruaudel-Texier, M. Vandevyver, M. Roulliay, A. Barraud, M. Leguan and R.M. Leguan, Makromol. Chem., Macromol. Symp., 46 1991 163.CrossRefGoogle Scholar
  25. [21]
    C. Dourthe, M. Izumi, Ch. Garrigou-Lagrange, Th. Buffeteau, B. Desbat and P. Delhaes, J. Phys. Chem., Vol. 96, 1992, 2812.Google Scholar
  26. [22]
    T. Nakamura, G. Yunome, R. Azumi, M. Yumura, M. Matsumoto, S. Horiuchi, H. Yamochi and G. Saito, Synth. Met., 56, 1993, 3853.CrossRefGoogle Scholar
  27. [23]
    M. Izumi, H. Ohnuki, H. Yamaguchi, H. Oyanagi and P. Delhaes, Synth. Met.,Vol. 56 1993 2560;Google Scholar
  28. H. Ohnuki, M.I zumi, K. Kitamura, H. Yamaguchi, H. Oyanagi and P. Delhaes, Thin Solid Films, Vol. 243 1994, 415.ADSCrossRefGoogle Scholar
  29. [24]
    H. Ohnuki, K. Kitamura, M. Izumi, H. Yamauchi and R. Kato, Synth. Met., Vol. 71 1995 pp. 2077–2078;CrossRefGoogle Scholar
  30. H. Ohnuki, K. Kojima, M. Izumi, H. Yamaguchi, H. Oyanagi and R. Kato, Thin Solid Films,in apress.Google Scholar
  31. [25]
    L. Aguilhon, J.P. Bourgoin, A. Barraud and P. Hesto, Synth. Met., Vol. 71 1995, 1971;CrossRefGoogle Scholar
  32. P. Hesto, L. Aguilhon, G. Trembly, J.P. Bourgoin, M. Vandevyver and A. Barraud, Thin Solid Films, Vol. 242, 1994, 7.ADSCrossRefGoogle Scholar
  33. [26]
    J. Richard, M. Vandevyver, A. Barraud, J-P. Morand and P. Delhaes, J. Colloid Interface Sci., Vol. 129, 1989, 254.CrossRefGoogle Scholar
  34. [27]
    K. Yamaji, Solid State Commun., Vol. 61, 1987, 413.ADSCrossRefGoogle Scholar
  35. [28]
    J. B. Torrance, Acc. Chem. Res., Vol. 12, 1979, 79.CrossRefGoogle Scholar
  36. [29]
    A. L Kitaigorodskii, Organic Chemical Crystallography, ( Consultants Bureau, New York, 1961 );Google Scholar
  37. A. I. Kitaigorodskii, Molecular Crsytals and Molecules, ( Academic Press, London, 1973 ).Google Scholar
  38. [30]
    M. Dressel, G. Grüner, J.P. Pouget, A. Breining and D. Schweitzer, J. Phys. I France Vol. 4, 1994 579;CrossRefGoogle Scholar
  39. M. Meneghetti, R. Bozio and C. Pecile, J. Physique, Vol. 47, 1986, 1377.CrossRefGoogle Scholar
  40. [31]
    H. Ohnuki, K. Kitamura, K. Uchinokura and M. Izumi, unpublished.Google Scholar
  41. [32]
    M. J. Rice, V. M. Yartsev and C. S. Jacobsen, Phys. Rev. B, Vol. 21, 1980, 3437.MathSciNetADSCrossRefGoogle Scholar
  42. [33]
    J. E. Eldridge, C. C. Homes, J. M. Williams, A. M. Kini and H. H. Wang, Spectrochimica Acta, Vol. 51A, 1995, pp. 947–960;CrossRefGoogle Scholar
  43. J. C. R. Faulhaber, D. Y. K. Ko and P. R. Briddon, Synthetic Metals, Vol. 60, 1993, pp. 227–232;CrossRefGoogle Scholar
  44. M. E. Kozlov, K. I. Pokhodnia and A. A. Yurchenko, Spectrochimica Acta, Vol. 43 A, 1987, pp. 323–329.Google Scholar
  45. [34]
    P. Delhaes and Ch. Garrigou-Lagrange, Phase Transitions, Vol. 13, 1988, pp. 87–99;CrossRefGoogle Scholar
  46. Ch. Garrigou-Lagrange, E. Dupart, J.P. Morand and P. Delhaes, Synth. Met., Vol. 27, 1988, pp. B537–B542.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1996

Authors and Affiliations

  • Mitsuru Izumi
    • 1
  • Hitoshi Ohnuki
    • 1
  1. 1.Laboratory of Applied PhysicsTokyo University of Mercantile MarineEtchu-jima, Koto-ku 135, TokyoJapan

Personalised recommendations