Advertisement

Positron Emission Tomography in Patients with an Acute Embolic Occlusion of the Carotid Artery

  • K. Uemura
  • S. Higano
Conference paper

Abstract

The results of recent experimental studies using animal models have greatly increased our knowledge of the early biochemical, pathophysiological, and histological events in ischemic brain tissue damage [1–7]. To improve the clinical results of early intervention in acute stroke patients, it is important that clinical practice respond to the implications of the results obtained in experimental studies [8,9]. Positron emission tomography (PET) of the brain provides quantitative maps of regional cerebral blood flow, oxygen metabolism, and blood volume. Although PET has some limitations, it may provide a bridge between experimental studies and clinical practice. In this symposium, we present our experiences with PET studies in patients with cerebral embolism in the very acute phase and discuss indication for reperfusion treatment.

Keywords

Positron Emission Tomography Positron Emission Tomography Study Cerebral Blood Volume Contralateral Hemisphere Positron Emission Tomography Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Astrup J. Siesjö BK, Symon L (1981) Thresholds in cerebral ischemia-the ischemic penumbra. Stroke 12: 723–725PubMedCrossRefGoogle Scholar
  2. 2.
    Reicle ME (1983) The pathophysiology of brain ischemia. Ann Neurol 13: 2–10CrossRefGoogle Scholar
  3. 3.
    Heiss W-D, Rosner G (1983) Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol 14: 294–301PubMedCrossRefGoogle Scholar
  4. 4.
    Heiss W-D (1992) Experimental evidence for ischemic thresholds and functional recovery. Stroke 23: 1668–1672PubMedCrossRefGoogle Scholar
  5. 5.
    Hossman KA (1988) Pathophysiology of cerebral infarction. In: Vinken PJ, Bruyn GW, Klawans HL, Tool JF (eds) Handbook of clinical neurology, vol 53. Elsevier, New York, pp 107–153Google Scholar
  6. 6.
    Siejö BK (1984) Cerebral circulation and metabolism. J Neurosurg 60: 883–908CrossRefGoogle Scholar
  7. 7.
    Garcia JH (1993) Pathophysiology of ischemic injury of the brain. In: Nelson JS, Parisi JE, Schochet SS Jr (eds) Principles and practice of neuropathology. Mosby, St Louis, pp 459–469Google Scholar
  8. 8.
    Heiss W-D, Huber M, Fink GR, Herholz K, Pietrzyk U, Wagner R, Wienhard K (1992) Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab 12: 193–203PubMedCrossRefGoogle Scholar
  9. 9.
    Powers WJ (1993) The ischemic penumbra; usefulness of PET. In: del Zoppo GJ, Mori E, Hacke W (eds) Thrombolytic therapy in acute ischemic stroke II. Springer, Berlin, Heidelberg, pp 17–21Google Scholar
  10. 10.
    Higano S, Uemura K, Shishido H, Kanno I, Tomura N, Sakamoto K (1993) Evaluation of critically perfused area in acute ischemic stroke for therapeutic reperfusion: a clinical PET study. Ann Nucl Med 7: 167–171PubMedCrossRefGoogle Scholar
  11. 11.
    Kanno I, Miura S, Yamamoto S, Uemura K (1985) Design and evaluation of a positron emission tomograph, HEADTOME IV. J Comput Assist Tomogr 9: 931–938PubMedCrossRefGoogle Scholar
  12. 12.
    Sundt T Jr, Sharbough FW, Anderson RE, Michenfelder JD (1974) Cerebral blood flow measurement and electroencephalogram during carotid endarterectomy. J Neurosurg 41: 310–320PubMedCrossRefGoogle Scholar
  13. 13.
    Baron JC, Rougemout D, Bousser MG, Lebrum-Gardie P, Iba-Zizen MT, Chivas JC (1981) Local CBF oxygen extraction fraction and CMRO,; Prognostic values in recent supratentorial infarction. J Cereb Blood Flow Metab 3 (suppl 1): S1–S2Google Scholar
  14. 14.
    Hakim AM, Evans AC, Berger I, Kuwabara H, Worsley K, Marchal G, Beil C, Pokrupa R, Diksic M, Meyer E, Gjedde A, Marret S (1989) The effect of nimodipine on the evaluation of human cerebral infarction studied by PET. J Cereb Blood Flow Metab 9: 523–534PubMedCrossRefGoogle Scholar
  15. 15.
    Powers WJ, Grubb RL, Darriet D, Reicle ME (1985) Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J Cereb Blood Flow Metab 5: 600–608PubMedCrossRefGoogle Scholar
  16. 16.
    del Zoppo GJ (1994) Microvascular changes during cerebral ischemia and reperfusion. Cerebrovasc Brain Metab Rev 6: 47–96PubMedGoogle Scholar
  17. 17.
    Minematsu K, Yamaguchi T, Omae T (1992) “Spectacular shrinking deficit”: rapid recovery from a major hemispheric syndrome by migration of an embolus. Neurology 42: 596–162Google Scholar
  18. 18.
    del Zoppo GJ, Copeland RB, Andercheck K, Hacke W, Koziol JA (1990) Hemorrhagic transformation following tissue plasminogen activator in experimental cerebral infarction. Stroke 21: 596–601PubMedCrossRefGoogle Scholar
  19. 19.
    Heiss W-D, Podreka I (1993) Role of PET and SPECT in the assessment of ischemic cerebrovascular disease. Cerebrovasc Brain Metab Rev 5: 235–263PubMedGoogle Scholar
  20. 20.
    Iida H, Itoh H, Bloomfield PM, Munaka M, Higano S, Murakami M, Inugami A, Ebri S, Aizawa Y, Kanno I, Uemura K (1994) A method to quantitate cerebral blood flow using a rotating gamma camera and iodine-123 amphetamine with one blood sampling. Eur J Nucl Med 21: 1072–1084PubMedCrossRefGoogle Scholar
  21. 21.
    Abi-Dargham A, Lauruelle M, Seibyl J (1994) SPECT measurement of benzodiazepine receptor binding in human brain with iodine-123-lomazenil: kinetic and equilibrium paradigms. J Nucl Med 35: 228–238PubMedGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1995

Authors and Affiliations

  • K. Uemura
    • 1
  • S. Higano
    • 2
  1. 1.Department of Radiology and Nuclear MedicineResearch Institute of Brain and Blood Vessels Akita CityAkita, 010Japan
  2. 2.Department of Radiology, School of MedicineTohoku UniversityAobaku, Sendai, 980Japan

Personalised recommendations