Delayed Neuronal Death and Ischemic Tolerance

  • T. Kirino
  • T. Nakagomi
  • H. Kanemitsu
  • A. Tamura
Conference paper


Neurons are exceptionally vulnerable to ischemic insult. Even a few minutes of ischemia can destroy selectively susceptible neurons. A good example of selective vulnerability of neurons to ischemia is seen in the hippocampal CA1 sector. The fact that the neurons in the hippocampal CAl sector are extremely sensitive to ischemia or epileptic seizure and easily die has been known for a century. Sommer described in 1880 a circumscribed neuronal loss in the CA1 sector in epileptic patients, and thus this region of the hippocampus is often called Sommer’s sector.


Ischemic Insult Mongolian Gerbil Neuronal Density Ischemic Tolerance Forebrain Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239: 57–69PubMedCrossRefGoogle Scholar
  2. 2.
    Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11: 491–498PubMedCrossRefGoogle Scholar
  3. 3.
    Smith M-L, Auer RN, Siesjö BK (1984) The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol (Berl) 64:319–332Google Scholar
  4. 4.
    Wieloch T (1985) Neurochemical correlates to selective neuronal vulnerability. Prog Brain Res 63: 69–85PubMedCrossRefGoogle Scholar
  5. 5.
    Brierley JB, Graham DI (1984) Hypoxia and vascular disorders of the central nervous system. In: Adams JH, Corsellis JAN, Duchen LW (eds) Greenfield’s neuropathology, 4th edn. Edward Arnold, London, pp 125–156Google Scholar
  6. 6.
    Kirino T, Sano K (1984) Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol (Berl) 62: 201–208CrossRefGoogle Scholar
  7. 7.
    Kirino T, Sano K (1984) Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus. Acta Neuropathol (Berl) 62: 209–218CrossRefGoogle Scholar
  8. 8.
    Thilmann R, Xie Y, Kleihues P, Kiessling M (1986) Persistent inhibition of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus. Acta Neuropathol (Berl) 71: 88–93CrossRefGoogle Scholar
  9. 9.
    Seubert P, Lee K, Lynch G (1989) Ischemia triggers NMDA receptor-linked cytoskeletal proteolysis in hippocampus. Brain Res 492: 366–370PubMedCrossRefGoogle Scholar
  10. 10.
    Tsubokawa H, Oguro K, Robinson HP, Masuzawa T, Kirino T, Kawai N (1992) Abnormal Cat+ homeostasis before cell death revealed by whole cell recording of ischemic CA hippocampal neurons. Neuroscience 49: 807–817PubMedCrossRefGoogle Scholar
  11. 11.
    Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634PubMedCrossRefGoogle Scholar
  12. 12.
    Siesjö BK, Bengtsson F (1989) Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 9: 127–140PubMedCrossRefGoogle Scholar
  13. 13.
    Kirino T (1993) Presynaptic terminals in hippocampal gliosis following transient ischemia in the Mongolian gerbil. Prog Brain Res 96: 261–270PubMedCrossRefGoogle Scholar
  14. 14.
    Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374PubMedCrossRefGoogle Scholar
  15. 15.
    Monaghan DT, Holets VR, Toy DW, Cotman CW (1983) Anatomical distributions of four pharmacologically distinct 3H-L-glutamate binding sites. Nature 306: 176–179PubMedCrossRefGoogle Scholar
  16. 16.
    Sheardown MJ, Nielsen D, Hanse AJ, Jacobsen P, Honore T (1990) 2,3-Dihydroxy-6-nitro7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 247: 571–574Google Scholar
  17. 17.
    Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K, Kamada T (1990) “Ischemic tolerance” phenomenon found in the brain. Brain Res 528:21–24Google Scholar
  18. 18.
    Kirino T, Tsujita Y, Tamura A (1991) Induced tolerance to ischemia in gerbil hippocampal neurons. J Cereb Blood Flow Metab 11: 299–307PubMedCrossRefGoogle Scholar
  19. 19.
    Vass K, Welch WJ, Nowak TS Jr (1988) Localization of 70-kDa stress protein induction in gerbil brain after ischemia. Acta Neuropathol (Berl) 77: 128–135Google Scholar
  20. 20.
    Nakagomi T, Kirino T, Kanemitsu H, Tsujita Y, Tamura A (1993) Early recovery of protein synthesis following ischemia in hippocampal neurons with induced tolerance in the gerbil. Acta Neuropathol (Berl) 86: 10–15CrossRefGoogle Scholar
  21. 21.
    Kato H, Araki T, Kogure K, Murakami M, Uemura K (1990) Sequential cerebral blood flow changes in short-term cerebral ischemia in gerbils. Stroke 21: 1346–1349PubMedCrossRefGoogle Scholar
  22. 22.
    Nakata N, Kato H, Liu Y, Kogure K (1992) Effects of pretreatment with sublethal ischemia on the extracellular glutamate concentrations during secondary ischemia in the gerbil hippocampus evaluated with intracerebral microdialysis. Neurosci Lett 138: 86–88PubMedCrossRefGoogle Scholar
  23. 23.
    Lindquist S (1986) The heat-shock response. Ann Rev Biochem 55: 1151–1191PubMedCrossRefGoogle Scholar
  24. 24.
    Subjeck JR, Shyy T-T (1986) Stress protein systems of mammalian cells. Am J Physiol 250: Cl-C17 (Cell Physiol 19: C1 - C17 )PubMedGoogle Scholar
  25. 25.
    Gerner EW, Schneider MJ (1975) Induced thermal resistance in HeLa cells. Nature 256: 500–502PubMedCrossRefGoogle Scholar
  26. 26.
    Barbe MF, Tytell M, Gower DJ, Welch WJ (1988) Hyperthermia protects against light damage in the rat retina. Science 241: 1817–1820PubMedCrossRefGoogle Scholar
  27. 27.
    Nowak TS Jr (1985) Synthesis of a stress protein following transient ischemia in the gerbil. J Neurochem 45: 1635–1641PubMedCrossRefGoogle Scholar
  28. 28.
    Petersen NS, Mitchell HK (1981) Recovery of protein synthesis after heat shock: prior heat treatment affects the ability of cells to translate mRNA. Proc Natl Acad Sci USA 78: 1708–1711PubMedCrossRefGoogle Scholar
  29. 29.
    Yost HJ, Lindquist S (1986) RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell 45: 185–193PubMedCrossRefGoogle Scholar
  30. 30.
    Mizzen LA, Welch WJ (1988) Characterization of the thermotolerant cell: I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J Cell Biol 106: 1105–1116PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1995

Authors and Affiliations

  • T. Kirino
    • 1
  • T. Nakagomi
    • 2
  • H. Kanemitsu
    • 2
  • A. Tamura
    • 2
  1. 1.Department of Neurosurgery, Faculty of MedicineUniversity of TokyoBunkyo-ku, Tokyo, 113Japan
  2. 2.Department of Neurosurgery, School of MedicineTeikyo UniversityItabashi-ku, Tokyo, 173Japan

Personalised recommendations