Applications of Diffusion-Weighted Magnetic Resonance Imaging for Stroke Diagnosis and Treatment

  • M. Fisher


The availability of imaging technologies to detect the extent of ischemic strokes and associated perfusion deficits shortly after onset would provide a valuable adjunct to the design and execution of therapeutic trials. While computerized tomographic (CT) scanning and standard magnetic resonance imaging (MRI) of the brain provided major advances in the clinician’s capability to assess stroke patients, neither of these imaging modalities can disclose the location or size of focal ischemic brain insults during the critical first few hours after onset. With CT scans, almost 24 h must elapse before an ischemic stroke can be accurately visualized, while standard T1 and T2 MRI requires approximately 12h for reliable ischemic lesion detection [1,2]. Accumulating evidence suggests that the first 4–6 h after stroke onset is the critical period for successful therapeutic intervention, whether by a thrombolytic or a neuroprotective or a combination approach [3].


Ischemic Stroke Apparent Diffusion Coefficient Magn Reson Image Ischemic Lesion Perfusion Deficit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yuh WTC, Crain MR, Loes DJ, Greene GM, Ryals TJ, Sato Y (1991) MR imaging of cerebral ischemia: findings in the first 24 hours. AJNR 12: 621–629PubMedGoogle Scholar
  2. 2.
    Byan RL, Levy LM, Whitlow WD, et al (1991) Diagnosis of acute cerebral infarction: comparison of CT and MR imaging. AJR 157: 585–597Google Scholar
  3. 3.
    Fisher M (1993) Medical therapy of ischemic stroke. In: Fisher M, Bogousslawsky J (eds) Current review of cerebrovascular disease. Current Medicine, Philadelphia, pp 158–170Google Scholar
  4. 4.
    Fisher M, Sotak CH, Minematsu K, Li L (1992) New magnetic resonance techniques for evaluating cerebrovascular disease. Ann Neurol 322: 115–122CrossRefGoogle Scholar
  5. 5.
    Naruse S, Horikawa J, Tanaka C, Hirakawa K, Nishikawa H, Yoshizaki K (1986) Significance of proton relaxation time measurement in brain edema, cerebral infarction and brain tumors. Magn Reson Med 4: 293–304Google Scholar
  6. 6.
    Le Bihan D, Turner R, Pekar J, Moonen CTW (1990) Diffusion and perfusion imaging by gradient sensitization: design, strategy and significance. J Magn Reson Imaging 1: 7–28CrossRefGoogle Scholar
  7. 7.
    Le Bihan D, Breton E, Aubin ML (1987) Study of cerebrospinal fluid dynamics by MRI of intravoxel incoherent motion ( IVIM ). J Neuroradiol 14: 388–395Google Scholar
  8. 8.
    Moseley ME, Cohen Y, Kucharczyk J, et al (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176: 439–446PubMedGoogle Scholar
  9. 9.
    Moseley ME, Kucharczyk J, Mintorovitch J, Cohen Y, Kurhanewicz J, Derugin N, Asgari H, Norman D (1990) Diffusion-weighted MRI imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR 11: 423–429PubMedGoogle Scholar
  10. 10.
    Benveniste H, Hedlund LH, Johnson GA (1992) Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke 23: 746–754PubMedCrossRefGoogle Scholar
  11. 11.
    Busza AL, Allen KL, King MD, van Bruggen N, Williams SR, Gadian DG (1992) Diffusion-weighted imaging studies of cerebral ischemia in gerbils. Potential relevance to energy failure. Stroke 23: 1602–1612Google Scholar
  12. 12.
    Li L, Sotak CH, Minematsu K, Fisher M (1993) Monitoring sodium flux during focal ischemia in the rat brain. J Magn Reson Imaging 3P: 157CrossRefGoogle Scholar
  13. 13.
    Turner R, Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J (1990) Echo-planar imaging of intravoxel incoherent motions. Radiology 177: 407–414PubMedGoogle Scholar
  14. 14.
    Merboldt KD, Hanicke W, Bruhn H, Gyngell ML, Frahm J (1992) Diffusion imaging of the human brain in vivo using high speed STEAM MRI. Magn Reson Med 23: 179–192PubMedCrossRefGoogle Scholar
  15. 15.
    Mintorovitch J, Moseley ME, Chileuitt L, Shimizu H, Cohen Y, Weinstein PR (1991) Comparison of a diffusion-and T2-weighted MRI for the early detection of cerebral ischemia and reperfusion in rats. Magn Reson Med 18: 39–50PubMedCrossRefGoogle Scholar
  16. 16.
    Minematsu K, Fisher M, Li L, Sotak CH, Davis MA, Fiandaca MS (1992) Diffusion-weighted magnetic resonance imaging: rapid and quantitative detection of focal brain ischemia. Neurology 42: 1717–1723Google Scholar
  17. 17.
    Reith W, Hasegawa Y, Latour L, et al (in press) Multislice diffusion-weighted images for three-dimensional evolution of cerebral ischemia in a rat stroke model (abstr). NeurologyGoogle Scholar
  18. 18.
    Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimuzu H, Kucharczyk J, Vendland MF, Weinstein PR (1990) Early detection of regional cerebral ischemia in cats: comparison of diffusion and T2-weighted MRI and spectroscopy. Magn Reson Med 14: 330–346PubMedCrossRefGoogle Scholar
  19. 19.
    Helpern JA, Dereski MO, Knight RA, et al (1993) Histological correlations of nuclear magnetic resonance imaging parameters in experimental cerebral ischemia. Magn Reson Imaging 11: 241–246PubMedCrossRefGoogle Scholar
  20. 20.
    Knight RA, Ordidge RJ, Helpern JA, Chopp M, Rodolosi LC, Peck D (1991) Temporal evolution of ischemic damage in rat brain monitored by proton magnetic resonance imaging. Stroke 22: 802–808PubMedCrossRefGoogle Scholar
  21. 21.
    Dardzinski BJ, Sotak CH, Fisher M, Hasegawa Y, Li L, Minematsu K (1993) Apparent diffusion coefeficient mapping of experimental focal cerebral ischemia using diffusion-weighted echo-planar imaging. Magn Reson Med 30: 318–323PubMedCrossRefGoogle Scholar
  22. 22.
    Hasegawa Y, Fisher M, Latour LL, Dardzinski BJ, Sotak CH (1994) MRI diffusion mapping of reversible and irreversible ischemic injury in focal brain ischemia. Neurology 44: 1484–1490PubMedGoogle Scholar
  23. 23.
    Jiang Q, Zhang ZG, Chopp M, et al (1993) Temporal evolution and spatial distribution of the diffusion constant of water in rat brain after transient middle cerebral artery occlusion. J Neurol Sci 120: 123–130PubMedCrossRefGoogle Scholar
  24. 24.
    Kucharczyk J, Mintorovitch J, Moseley MR, et al (1991) Ischemic brain damage: reduction by sodium-calcium ion channel modulator RS-87476. Radiology 179: 221–227PubMedGoogle Scholar
  25. 25.
    Minematsu K, Li L, Sotak CH, Davis MA, Fisher M (1992) Reversible focal ischemic injury demonstrated by diffusion-weighted magnetic resonance imaging in rats. Stroke 23: 1304–1310PubMedCrossRefGoogle Scholar
  26. 26.
    Minematsu K, Fisher M, Li L, Davis MA, Knapp AG, Cotter RE, McBurney RN, Sotak CH (1993) Effects of a novel NMDA antagonist on experimental stroke rapidly and quantitatively assessed by diffusion-weighted MRI. Neurology 43: 397–403PubMedGoogle Scholar
  27. 27.
    Minematsu K, Fisher M, Li L, Sotak DH (1993) Diffusion and perfusion MRI studies to evaluate a non-competitive NMDA antagonist and reperfusion in experimental stroke in rats. Stroke 24: 2074–2081PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1995

Authors and Affiliations

  • M. Fisher
    • 1
  1. 1.Department of NeurologyThe Medical Center off Central Massachusetts and University of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations