Skip to main content

Optimal solutions of the Monge problem

  • Chapter

Part of the book series: Advances in Mathematical Economics ((MATHECON,volume 6))

Summary

We obtain optimality conditions for Monge solutions of the Monge— Kantorovich problem with a smooth cost function. Also we give explicit solutions to Monge problems and to Monge—Kantorovich problems for several natural classes of cost functions.

Supported in part by Russian Foundation for Humanitarian Sciences (projects 01-02-00481,03-02-00027).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brenier, Y.: Décomposition polaire et réarrangement monotone des champs de vecteurs. C.R. Acad. Sci. Paris Sér. I Math. 305, 805–808 (1987)

    Google Scholar 

  2. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure. Appl. Math. 44, 375–417 (1991)

    Article  Google Scholar 

  3. Carlier, G., Ekeland, I., Levin, V.L., Shananin, A.A.: A system of inequalities arising in mathematical economics and connected with the Monge-Kantorovich problem. Ceremade-UMR 7534-Université Paris Dauphine, No 0213, 3 Mai 2002

    Google Scholar 

  4. Evans, L.C.: Partial differential equations and Monge-Kantorovich mass transfer. In: Bott, R. et al., eds.: pp.26–78, Current Developments in Mathematics. International Press, Cambridge 1997

    Google Scholar 

  5. Gangbo, W., McCann, R.J.: Optimal maps in Monge’s mass transport problem. C.R. Acad. Sci. Paris Sér. I Math. 321, 1653–1658 (1995)

    Google Scholar 

  6. Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177, 113–161 (1996)

    Article  Google Scholar 

  7. Kantorovich, L.V.: On mass transfer. Dokl. Akad. Nauk SSSR 37 (7–8), 199–201 (1942) (Russian)

    Google Scholar 

  8. Kantorovich, L.V., Akilov, G.P.: Functional Analysis, 3rd ed. Moscow: Nauka 1984 (Russian)

    Google Scholar 

  9. Kantorovich, L.V., Rubinshtein, G.S.: On a function space and some extremal problems. Dokl. Akad. Nauk SSSR 115, 1058–1061 (1957) (Russian)

    Google Scholar 

  10. Kantorovich, L.V., Rubinshtein, G.S.: On a space of countably additive functions. Vestnik Leningrad Univ. 13 (7), 52–59 (1958) (Russian)

    Google Scholar 

  11. Levin, V.L.: Duality and approximation in the mass transfer problem. In: Mityagin, B.S. (ed): Mathematical Economics and Functional Analysis. Moscow: Nauka 1974, pp. 94–108 (Russian)

    Google Scholar 

  12. Levin, V.L.: On the problem of mass transfer. Soviet Math. Dokl. 16, 1349–1353 (1975)

    Google Scholar 

  13. Levin, V.L.: Duality theorems in the Monge-Kantorovich problem. Uspekhi Matem Nauk 32 (3), 171–172 (1977) (Russian)

    Google Scholar 

  14. Levin, V.L.: General Monge—Kantorovich problem and its applications in measure theory and mathematical economics. In: Leifman, L.J. (ed): Functional Analysis, Optimization, and Mathematical Economics, pp. 141–176, A Collection of Papers Dedicated to the Memory of L.V Kantorovich. N.Y. Oxford: Oxford Univ. Press 1990a

    Google Scholar 

  15. Levin, V.L.: A formula for optimal value of Monge-Kantorovich problem with a smooth cost function and characterization of cyclically monotone mappings. Matem. Sbornik 181, N12, 1694–1709 (1990b)(Russian); English translation in Math. USSR Sbornik 71, No 2, 533–548 (1992)

    Google Scholar 

  16. Levin, V.L.: Some applications of set-valued mappings in mathematical economics. Journal of Mathematical Economics 20, 69–87 (1991)

    Article  Google Scholar 

  17. Levin, V.L.: A superlinear multifunction arising in connection with mass transfer problems. Set-Valued Analysis 4, N1, 41–65 (1996)

    Article  Google Scholar 

  18. Levin, V.L.: Reduced cost functions and their applications. Journal of Mathematical Economics 28, 155–186 (1997a)

    Article  Google Scholar 

  19. Levin, V.L.: On duality theory for non-topological variants of the mass transfer problem. Matem. Sbornik 188, N4, 95–126 (1997b) (Russian); English translation in Sbornik:Mathematics 188, N4, 571–602 (1997)

    Google Scholar 

  20. Levin, V.L.: Topics in the duality theory for mass transfer problems. In: Distributions with given marginals and moment problems (Benes, V. and Štěpan, J., eds.), pp.243–252, Kluwer Academic Publishers 1997c

    Chapter  Google Scholar 

  21. Levin, V.L.: Existence and uniqueness of a measure preserving optimal mapping in a general Monge-Kantorovich problem. Funct. Anal, and Its Appl. 32, No. 3, 205–208(1998)

    Article  Google Scholar 

  22. Levin, V.L.: Abstract cyclical monotonicity and Monge solutions for the general Monge-Kantorovich problem. Set-Valued Analysis 7, 7–32 (1999)

    Article  Google Scholar 

  23. Levin, V.L.: On generic uniqueness of optimal solutions for the general Monge-Kantorovich problem. Set-Valued Analysis 9, 383–390 (2001a)

    Article  Google Scholar 

  24. Levin, V.L.: The Monge-Kantorovich problems and stochastic preference relations. Advances in Math. Economics 3, 97–124 (2001b)

    Google Scholar 

  25. Levin, V.L.: Optimality conditions for smooth Monge solutions of the Monge-Kantorovich problem. Funct. Anal, and Its Appl. 36, No 2, 114–119 (2002)

    Article  Google Scholar 

  26. Levin, V.L.: Solving the Monge and the Monge-Kantorovich problems: theory and examples. Doklady Mathematics 67, No 1, 1–4 (2003)

    Google Scholar 

  27. Levin, V.L., Milyutin, A.A.: The problem of mass transfer with a discontinuous cost function and a mass statement of the duality problem for convex extremal problems. Russian Math. Surveys 34 (3), 1–78 (1979)

    Article  Google Scholar 

  28. Monge, G.: Mémoire sur la théorie des déblais et de remblais. Histoire de l’Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, 666–704 (1781)

    Google Scholar 

  29. Rachev, S.T., Rüschendorf, L.: Mass Transportation Problems. Volume 1: Theory, Volume 2: Applications. Springer 1998

    Google Scholar 

  30. Rüschendorf, L., Rachev, S.T.: A characterization of random variables with minimum L2-distance. J. Multivariate Anal. 32, 48–54 (1990)

    Article  Google Scholar 

  31. Sudakov V.N.: Geometric problems in the theory of infinite-dimensional probability distributions. Trudy MIAN 141 (1976) (Russian); English translation in: Proc. Steklov Inst. Math. 141 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Levin, V.L. (2004). Optimal solutions of the Monge problem. In: Kusuoka, S., Maruyama, T. (eds) Advances in Mathematical Economics. Advances in Mathematical Economics, vol 6. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68450-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68450-3_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68452-7

  • Online ISBN: 978-4-431-68450-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics