Skip to main content

Voltage-Gated Ion Channels in Human Photoreceptors: Na+ and Hyperpolarization-Activated Cation Channels

  • Conference paper

Part of the book series: Keio University International Symposia for Life Sciences and Medicine ((KEIO,volume 11))

Abstract

A light stimulus hyperpolarizes photoreceptors in biochemical processes in the outer segment and reduces the release of neurotransmitter by decreasing a Ca2+ influx at their synaptic terminals [1–6]. The photovoltage is shaped by voltage-gated channels in the inner segment [7–11]. Major voltage-gated currents measured in vertebrate photoreceptors are an L-type Ca2+ current, a delayed rectifier K+ current, a fast transient K+ current, and a hyperpolarization-activated cation current (h current) [7, 9, 10, 12]. Although mammalian photoreceptors are commonly thought to be nonspiking neurons [7, 9–11, 13], electrophysiological recordings with suction electrodes show that the termination of a light stimulus induces spike-like current responses in monkey photoreceptors [14]. This raises the possibility that primate photoreceptors may be able to generate action potentials. However, this hypothesis still remains uncertain, as there are few voltage recordings from primate photoreceptors [11, 15, 16]. Using the patch-clamp technique, we examined whether human rod photoreceptors can elicit action potentials, and also investigated the role of the voltage-gated currents for rod voltage responses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lipton SA, Ostroy SE, Dowling JE (1977) Electrical and adaptive properties of rod photoreceptors in Bufo marinus. I. Effects of altered extracellular Ca2+ levels. J Gen Physiol 70: 747–770

    Article  PubMed  CAS  Google Scholar 

  2. Copenhagen DR, Jahr CE (1989) Release of endogenous excitatory amino acids from turtle photoreceptors. Nature 341: 536–539

    Article  PubMed  CAS  Google Scholar 

  3. Wässle H, Boycott BB (1991) Functional architecture of the mammalian retina. Physiol Rev 71: 447–480

    PubMed  Google Scholar 

  4. Masland RH (1996) Processing and encoding of visual information in the retina. Curr Opin Neurobiol 6: 467–474

    Article  PubMed  CAS  Google Scholar 

  5. Savchenko A, Barnes S, Kramer RH (1997) Cyclic-nucleotide-gated channels mediate synaptic feedback by nitric oxide. Nature 390: 694–698

    PubMed  CAS  Google Scholar 

  6. DeVries SH, Schwartz EA (1999) Kainate receptors mediate synaptic transmission between cones and “Off” bipolar cells in a mammalian retina. Nature 397: 157–160

    Article  PubMed  CAS  Google Scholar 

  7. Bader CR, Bertrand D, Schwartz EA (1982) Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina. J Physiol 331: 253–284

    PubMed  CAS  Google Scholar 

  8. Barnes S, Hille B (1989) Ionic channels of the inner segment of tiger salamander cone photoreceptors. J Gen Physiol 94: 719–743

    Article  PubMed  CAS  Google Scholar 

  9. Maricq AV, Korenbrot JI (1990) Inward rectification in the inner segment of single retinal cone photoreceptors. J Neurophysiol 64: 1917–1928

    PubMed  CAS  Google Scholar 

  10. Yagi T, Macleish PR (1994) Ionic conductances of monkey solitary cone inner segments. J Neurophysiol 71: 656–665

    PubMed  CAS  Google Scholar 

  11. Schneeweis DM, Schnapf JL (1995) Photovoltage of rods and cones in the macaque retina. Science 268: 1053–1056

    Article  PubMed  CAS  Google Scholar 

  12. Wollmuth LP, Hille B (1992) Ionic selectivity of Ih channels of rod photoreceptors in tiger salamanders. J Gen Physiol 100: 749–765

    Article  PubMed  CAS  Google Scholar 

  13. Berry MJ, Brivanlou IH, Jordan TA, et al. (1999) Anticipation of moving stimuli by the retina. Nature 398: 334–338

    Article  PubMed  CAS  Google Scholar 

  14. Schnapf JL, Nunn BJ, Meister M, et al. (1990) Visual transduction in cones of the monkey Macaca fascicularis. J Physiol 427: 681–713

    PubMed  CAS  Google Scholar 

  15. Schneeweis DM, Schnapf JL (1999) The photovoltage of macaque cone photoreceptors: adaptation, noise, and kinetics. J Neurosci 19: 1203–1216

    PubMed  CAS  Google Scholar 

  16. Schneeweis DM, Schnapf JL (2000) Noise and light adaptation in rods of the macaque monkey. Vis Neurosci 17: 659–666

    Article  PubMed  CAS  Google Scholar 

  17. Fain GL, Quandt FN, Bastian BL, et al. (1978) Contribution of a caesium-sensitive conductance increase to the rod photoresponse. Nature 272: 466–469

    Article  PubMed  CAS  Google Scholar 

  18. Kawai F, Horiguchi M, Suzuki H, et al. (2001) Na+ action potentials in human photoreceptors. Neuron 30: 451–458

    Article  PubMed  CAS  Google Scholar 

  19. Calkins DJ, Sterling P (1999) Evidence that circuits for spatial and color vision segregate at the first retinal synapse. Neuron 24: 313–321

    Article  PubMed  CAS  Google Scholar 

  20. Pugh EN Jr, Nikonov S, Lamb TD (1999) Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr Opin Neurobiol 9: 410–418

    Article  PubMed  CAS  Google Scholar 

  21. Kawai F, Sterling P (1999) AMPA receptor activates a G-protein that suppresses a cGMP-gated current. J Neurosci 19: 2954–2959

    PubMed  CAS  Google Scholar 

  22. Werblin FS (1978) Transmission along and between rods in the tiger salamander retina. J Physiol 280: 449–470

    PubMed  CAS  Google Scholar 

  23. Hamill OP, Marty A, Neher E, et al. (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391: 85–100

    Article  PubMed  CAS  Google Scholar 

  24. Kawai F, Horiguchi M, Suzuki H, et al. (2002) Modulation by hyperpolarizationactivated cation currents of voltage responses in human rods. Brain Res 943: 4855

    Article  Google Scholar 

  25. Yau K-W, Baylor DA (1989) Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu Rev Neurosci 12: 289–327

    Article  PubMed  CAS  Google Scholar 

  26. Torre V, Ashmore JF, Lamb TD, et al. (1995) Transduction and adaptation in sensory receptor cells. J Neurosci 15: 7757–7768

    PubMed  CAS  Google Scholar 

  27. Kawai F, Kurahashi T, Kaneko A (1996) T type Ca2+ channel lowers the threshold of spike generation in the newt olfactory receptor cell. J Gen Physiol 108: 525–535

    Article  PubMed  CAS  Google Scholar 

  28. Wang GY, Ratto G, Bisti S, et al. (1997) Functional development of intrinsic properties in ganglion cells of the mammalian retina. J Neurophysiol 78: 2895–2903

    PubMed  CAS  Google Scholar 

  29. Hidaka S, Ishida AT (1998) Voltage-gated Na+ current availability after step- and spike-shaped conditioning depolarizations of retinal ganglion cells. Pflügers Arch 436: 436–508

    Article  Google Scholar 

  30. Tabata T, Ishida AT (1999) A zinc-dependent Cl current in neuronal somata. J Neurosci 19: 5195–5204

    PubMed  CAS  Google Scholar 

  31. Hagiwara S, Kakahashi K (1974) The anomalous rectification and cation selectivity of the membrane of a starfish egg cell. J Membr Biol 18: 61–80

    Article  PubMed  CAS  Google Scholar 

  32. Tachibana M (1983) Ionic currents of solitary horizontal cells isolated from goldfish retina. J Physiol 345: 329–351

    PubMed  CAS  Google Scholar 

  33. Hestrin S (1987) The properties and function of inward rectification in rod photoreceptors of the tiger salamander. J Physiol 390: 319–333

    PubMed  CAS  Google Scholar 

  34. Fain GL, Gerschenfeld HM, Quandt FN (1980) Calcium spikes in toad rods. J Physiol 303: 495–513

    PubMed  CAS  Google Scholar 

  35. Gerschenfeld HM, Piccolino M, Neyton J (1980) Feed-back modulation of cone synapses by L-horizontal cells of turtle retina. J Exp Biol 89: 177–192

    PubMed  CAS  Google Scholar 

  36. Piccolino M, Gerschenfeld HM (1980) Characteristics and ionic processes involved in feedback spikes of turtle cones. Proc R Soc Lond B Biol Sci 206: 439–463

    Article  PubMed  CAS  Google Scholar 

  37. Maricq AV, Korenbrot JI (1988) Calcium and calcium-dependent chloride currents generate action potentials in solitary cone photoreceptors. Neuron 1: 503–515

    Article  PubMed  CAS  Google Scholar 

  38. Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316: 440–443

    Article  PubMed  CAS  Google Scholar 

  39. Kaneko A, Pinto LH, Tachibana M (1989) Transient calcium current of retinal bipolar cells of the mouse. J Physiol 410: 613–629

    PubMed  CAS  Google Scholar 

  40. Mayer ML, Westbrook GL (1983) A voltage-clamp analysis of inward (anomalous) rectification in mouse spinal sensory ganglion neurones. J Physiol 340: 19–45

    PubMed  CAS  Google Scholar 

  41. DiFrancesco D (1984) Characterization of the pace-maker current kinetics in calf Purkinje fibres. J Physiol 348: 341–367

    PubMed  CAS  Google Scholar 

  42. McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431: 291–318

    PubMed  CAS  Google Scholar 

  43. Wollmuth LP (1995) Multiple ion binding sites in Ih channels of rod photoreceptors from tiger salamanders. Pflügers Arch 430: 34–43

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Tokyo

About this paper

Cite this paper

Miyachi, Ei., Kawai, F. (2003). Voltage-Gated Ion Channels in Human Photoreceptors: Na+ and Hyperpolarization-Activated Cation Channels. In: Kaneko, A. (eds) The Neural Basis of Early Vision. Keio University International Symposia for Life Sciences and Medicine, vol 11. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68447-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68447-3_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68449-7

  • Online ISBN: 978-4-431-68447-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics