Advertisement

Recovery from Eutrophication

  • Erik Jeppesen
  • Martin Søndergaard
  • Jens Peder Jensen
  • Torben L. Lauridsen
  • Clive Howard-Williams
  • David Kelly

Abstract

Many lakes world-wide suffer from eutrophication as a result of high external nutrient inputs from domestic sewage, industry and agricultural activities. Increased demands for water by a growing and developing human population as well as enhanced global warming may escalate the eutrophication on a global scale in the next century. Yet, in some countries large efforts are now being made to combat eutrophication by reducing the phosphorus input. Some lakes respond rapidly to such loading reductions, while others are highly resistant due to high internal phosphorus loading (chemical resistance) or homeostatic effects of the food web altered by eutrophication (biological resistance). Some general models have been developed for the response of lakes to reduced loading, but major advances within this field can be expected in the future when more case studies appear. While these models may be used as a core for evaluating response patterns, local factors should always be considered to avoid wrong and often expensive decisions. To precipitate recovery from chemical and biological resistance, several physico-chemical and biological restoration methods have been developed. The biological methods include removal of planktivorous and benthivorous fish, stocking of piscivorous fish, protection or planting of submerged macrophytes, introduction of artificial structures, or addition of mussels. A widely applied method is removal of planktivorous and benthivorous fish. In many cases such efforts have yielded major improvements in water quality and the ecological state of the lakes. Yet, the listed restoration methods have mainly been applied to northern temperate lakes and cannot readily be transferred to subtropical and tropical lakes where the eutrophication-related problems are going to be greatest in the future. There is thus a major need for development and adaptation of methods focusing on south temperate, subtropical and tropical lakes.

Keywords

Phytoplankton Biomass Shallow Lake Submerged Macrophyte Internal Loading Temperate Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, A., H. Berggren, and G. Cronberg. 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15CrossRefGoogle Scholar
  2. Anneville, O., and J. P. Pelletier. 2000. Recovery of Lake Geneva from eutrophication: quantitative response of phytoplankton. Arch. Hydrobiol. 148: 607–624Google Scholar
  3. Beklioglu, M., L. Carvalho, and B. Moss. 1999. Rapid recovery of a shallow hypertrophic lake following sewage effluent diversion: lack of chemical resilience. Hydrobiologia 412: 5–15CrossRefGoogle Scholar
  4. Benndorf, J. 1995. Possibilities and limits for controlling eutrophication by biomanipulation. hit. Rev. Ges. Hydrobiol. 80: 519–534CrossRefGoogle Scholar
  5. Berg, S., E. Jeppesen, and M. Sondergaard. 1997. Pike (Esox luciusL.) stocking as a biomanipulation tool. 1: Effects on the fish population in Lake Lyng (Denmark). Hydrobiologia 342/343: 311–318Google Scholar
  6. Bernhardt, von H., J. Clasen, O. Hover, and W. Wilhelms. 1985. Oligotrophication in lakes by means of chemical nutrient removal from the tributaries. Its demonstration with the Wahnbach Reservoir. Arch. Hydrobiol. Suppl. 70: 481–533Google Scholar
  7. Brabrand, A., B. Faafeng, and J. P. Nilssen. 1990. Relative importance of phosphorus supply to phytoplankton production: fish excretion versus external loading. Can. J. Fish. Aquat. Sci. 47: 364–372CrossRefGoogle Scholar
  8. Breukelaar, A.W., E. H. R. R. Lammens, J. P. G. Klein Breteler, and I. Tatrai. 1994. Effects of benthivorous bream (Abramis bramaL.) and carp (Cyprinus caprioL.) on sediment resuspension and concentration of nutrients and chlorophyll a. Freshwat. Biol. 32: 113–121Google Scholar
  9. Brooks, J. L., and S. I. Dodson. 1965. Predation, body size and composition of plankton. Science 150: 28–35CrossRefGoogle Scholar
  10. Bauerle, E., and U. Gaedke, 1998. Advances in Limnology 53. Lake Constance: Characterization of an ecosytem in transition. E. Schweizerbart’sche Verlagsbuchhandlung, 610 pGoogle Scholar
  11. Choulik, O., and T. R. Moore. 1992. Response of a subarctic lake chain to reduced sewage loading. Can. J. Fish. Aquat. Sci. 49: 1236–1245CrossRefGoogle Scholar
  12. Cooke, G. D., E. B. Welch, S. A. Peterson, and P. R. Newroth. 1993. Restoration and management of lakes and reservoirs, Boca Raton, Florida: Lewis PublishersGoogle Scholar
  13. Cronberg, G. 1999. Qualitative and quantitative investigations of phytoplankton in Lake Ringsjön, Scania, Sweden. Hydrobiologia 404: 27–40CrossRefGoogle Scholar
  14. Degerman, E., J. Hammar, P. Nyberg, and G. Svärdson. 2001. Human impact on the fish density in four largest lakes of Sweden. Ambio. 30: 522–528Google Scholar
  15. Dumont, H. J. 1994. On the diveristy of the Cladocera in the tropics. Hydrobiologia 272: 27–38CrossRefGoogle Scholar
  16. Eckmann, R., and R. Rösch. 1998. Lake Constance fisheries and fish ecology. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 53: 285–301Google Scholar
  17. Edmondson, W. T., and J. T. Lehman. 1981. The effect of changes in the nutrient income on the condition of Lake Washington. Limnol. Oceanogr. 26: 1–29Google Scholar
  18. Fernando, C. H. 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia 272: 105–123CrossRefGoogle Scholar
  19. Gaedke, U. 1998. The response of the pelagic food web to re-oligotrophication of a large and deep lake (L. Constance): Evidence for scale-dependent hierarchical patterns ? Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 53: 317–333Google Scholar
  20. Güde, H., H. Rossknecht, and G. Wagner. 1998. Anthropogenic impacts on the trophic state of Lake Constance during the 20th century. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 53: 85–108Google Scholar
  21. Hanson, J. M., and W. C. Leggett. 1982. Empirical prediction of fish biomass and weight. Can. J. Fish. Aquat. Sci. 39: 257–263CrossRefGoogle Scholar
  22. Hanson, J. M., W. C. Leggett., and R. H. Peters. 1984. Empirical prediction of crustacean zooplankton biomass and profundal macrobenthos biomass in lakes. Can. J. Fish. Aquat. Sci. 41: 439–445CrossRefGoogle Scholar
  23. Hansson, L-A., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P-A. Nilsson, M. SgndergaA.R.D., and J. Strand. 1998. Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosystems 1: 558–574Google Scholar
  24. Horppila, J., H. Peltonen, T. Malinen, E. Luokkanen, and T. Kairesalo. 1998. Top-down or bottom-up effects by fish — issues of concern in biomanipulation op lakes. Restor. Ecol. 6: 1–10Google Scholar
  25. Howard-Williams, C., and D. Kelly. 2003. Recovery from eutrophication: Local perspectives in lake restoration and rehabilitation, Chapter 5–2. InM. Kumagai and W. F. Vincent [eds.], Freshwater Management: Global Versus Local Perspectives. Springer-Verlag, Tokyo, this volumeGoogle Scholar
  26. Hrbacek, J., V. Dvorakova, V. Korinekand, and L. Prochazkova. 1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Verh. Internat. Verein. Limnol. 14: 192–195Google Scholar
  27. Jeppesen, E., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. J. Pedersen, and L. Jensen. 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343: 151–164Google Scholar
  28. Jeppesen, E., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. J. Pedersen, and L. Jensen., P. H. Moller, and K. Sandby. 1998. Changes in nitrogen retention in shallow eutrophic lakes following a decline in density of cyprinids. Arch. Hydrobiol. 142: 129–151Google Scholar
  29. Jeppesen, E., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. J. Pedersen, and L. Jensen., P. H. Moller, and K. Sandby, M. Sondergaard, J. P. Jensen, E. Mortensen, A.-M. Hansenand T. Jrgensen. 1998. Cascading trophic interactions from fish to bacteria and nutrients after reduced sewage loading: an 18-year study of a shallow eutrophic lake. Ecosystems 1: 250–267CrossRefGoogle Scholar
  30. Jeppesen, E., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. J. Pedersen, and L. Jensen., P. H. Moller, and K. Sandby, M. Sondergaard, J. P. Jensen, E. Mortensen, A.-M. Hansen and T. Jrgensen, J. P. Jensen, M. Sondergaard, and T. Lauridsen. 1999. Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity. Hydrobiologia 408/409: 217–231Google Scholar
  31. Jeppesen, E., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. J. Pedersen, and L. Jensen., P. H. Moller, and K. Sandby, M. Sondergaard, J. P. Jensen, E. Mortensen, A.-M. Hansen and T. Jrgensen, and F. Landkildehus. 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwat. Biol. 45: 201–213Google Scholar
  32. Jeppesen, E., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. J. Pedersen, and L. Jensen., P. H. Moller, and K. Sandby, M. Sondergaard, J. P. Jensen, E. Mortensen, A.-M. Hansen and T. Jrgensen, and. 2002. Response of phytoplankton, zooplankton and fish to re-oligotrophication: an 11-year study of 23 Danish lakes. Aquat. Ecosys. Health & Managm. 5: 31–43Google Scholar
  33. Jeppesen, E., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. J. Pedersen, and L. Jensen., P. H. Moller, and K. Sandby, M. Sondergaard, J. P. Jensen, E. Mortensen, A.-M. Hansenand T. Jrgensen, and I. Sammalkorpi, 2002. Lakes, Chapter 14, p. 297–324. In M. Perrow and T. Davy [eds.], Handbook of Restoration Ecology. Cambridge University PressGoogle Scholar
  34. Kohler, J., H. Bernhardt, and S. Hoeg. 2000. Long-term response of phytoplankton to reduced nutrient load in the flusehd Lake Müggelsee (Spree system, Germany). Arch. Hydrobiol. 148: 209–229Google Scholar
  35. Kummerlin, R. E. 1998. Taxonomical response of the phytoplankton community of Upper Lake Constance (Bodensee-Obersee) to eutrophication and re-oligotrophication. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 53: 109–117Google Scholar
  36. Lathrop, R. C. 1990. Response of Lake Mendota (Wisconsin, U.S.A.) to decreased phosphorus loadings and the effect on downstream lakes. Ver. Int. Verein. Limnol. 24: 457–463Google Scholar
  37. Lauridsen, T., E. Jeppesen, and F.O. Andersen. 1993. Colonization of submerged macrophytes in shallow fish manipulated Lake Væng: Impact of sediment composition and birds grazing. Aquat. Bot. 46: 1–15Google Scholar
  38. Lazarro, X. 1997. Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes and reservoirs ? Ver. Int. Verein. Limnol. 26: 719–730Google Scholar
  39. Lowe, E. F., L. E. Battoe, M. F. Coveny, C. L. Schelske, K. E. Havens, E. R. Marzolf, and K. R. Reddy. 2001. The restoration of Lake Apopka in relation to alternative stable states: an alternative view to that of Bachmann et al. (1999). Hydrobiologia 448: 11–18CrossRefGoogle Scholar
  40. Marsden, S. 1989. Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshw. Biol. 21: 139–162Google Scholar
  41. Meijer, M.-L., I. de Boots, M. Scheffer, R. Portielje, and H. Hosper. 1999. Biomanipulation in shallow lakes in the Netherlands: an evaluation of 18 case studies. Hydrobiologia 408/409: 13–30Google Scholar
  42. Mitchell, S. F., and M. R. Perrow. 1997. Interactions between grazing birds and macrophytes, p. 175–196. InE. Jeppesen, Ma. Sondergaard, Mo. Sondergaard and K. Christoffersen [eds.], The structuring role of submerged macrophytes in lakes. Ecological Studies, Vol. 131. Springer Verlag, New YorkGoogle Scholar
  43. Moss, B. 1998. Shallow lakes: biomanipulation and eutrophication. Scope Newsletter 29, 45 pGoogle Scholar
  44. Muller, R., and H. J. Meng. 1992. Past and present state of the ichthyofauna of Lake Lugano. Aquat. Sci. 54: 338–350Google Scholar
  45. Oecd. 1982. Eutrophication of waters. Monitoring, assessments and control. OECD, Paris. 210 pGoogle Scholar
  46. Olsen, P., and E. Willen. 1980. Phytoplankton response to sewage reduction in Vättern, a large oligotrophic lake in Central Sweden. Arch. Hydrobiol. 89: 171–188Google Scholar
  47. Perrow, M. P., M-L. Meijer, P. Dawidowicz, and H. Coops. 1997. Biomanipulation in shallow lakes: state of the art. Hydrobiologia 342/343: 355–363Google Scholar
  48. Polli, B., and M. Simona. 1992. Qualitative and quantitative aspects of the evolution of the planktonic populations in Lake Lugano. Aqat. Sci. 54: 303–320Google Scholar
  49. Prejs, A., A. Martyniak, S. BORON, P. Hliwa, and P. Koperski. 1994. Food web manipulation in small, eutrophic Lake Wirbel, Poland: effect of stocking with juvenile pike on planktivorous fish. Hydrobiologia 275/276: 65–70Google Scholar
  50. Reynolds, C. F. 1984. The ecology of freshwater phytoplankton. Cambridge University Press. Cambridge, 384 pGoogle Scholar
  51. Ruggio, D., G. Morabito, P. Panzani, and A. Pugnetti. 1998. Trends and relations among basic phytoplankton characteristics in the course of the long-term oligotrophication of Lake Maggiore (Italy). Hydrobiologia 370: 243–257CrossRefGoogle Scholar
  52. Sas, H., 1989. Lake restoration by reduction of nutrient loading. Expectation, experiences, extrapolation. Acad. Ver. Richardz Gmbh. 409: 115–122Google Scholar
  53. Skov, C., and S. Berg. 1999. Utilisation of natural and artificial habitats by YOY pike in a biomanipulated lake. Hydrobiologia 408/409: 115–122Google Scholar
  54. Straile, D., and W. Geller. 1998. Crustacean zooplankton in Lake Constance from 1920 to 1995: Response to eutrophication and re-oligotrophication. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 53: 255–274Google Scholar
  55. Sondergaard, M., L. Olufsen, T. Lauridsen, E. Jeppesen, and T. V. Madsen. 1996. The impact of grazing waterfowl on submerged macrophytes: in situ experiments in a shallow eutrophic lake. Aquat. Bot. 53: 73–84Google Scholar
  56. Sondergaard, M., L. Olufsen, T. Lauridsen, E. Jeppesen, and T. V. Madsen, J. P. Jensen, and E. Jeppesen. 1999. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia 408/409: 145–152Google Scholar
  57. Sondergaard, M., L. Olufsen, T. Lauridsen, E. Jeppesen, and T. V. Madsen, and. 2001. Retention and internal loading of phosphorus in shallow, eutrophic lakes. The Scientific World 1: 427–442CrossRefGoogle Scholar
  58. Sondergaard, M., L. Olufsen, T. Lauridsen, E. Jeppesen, and T. V. Madsen, E. Jeppesen, and P. H. Moller. 2002. Seasonal dynamics in the concentrations and retention of phosphorus in shallow Danish lakes during recovery. Aquat. Health Managm. 5: 19–29Google Scholar
  59. Sondergaard, M., L. Olufsen, T. Lauridsen, E. Jeppesen, and T. V. Madsen, E. Jeppesen, and P. H. Moller. UN. 1998. World population prospects: The 1996 revision. United Nations Secretariat, Department of Economic and Social Affairs, Population Division. Volume 1, 614 ppGoogle Scholar
  60. Vollenweider, R. A. 1976. Advance in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. Ital. ldrobiol. 33: 53–83Google Scholar
  61. Wetzel, R. G. 1990. Land-water interfaces: metabolic and limnological regulators. Verh. Int. Verein. Limnol. 24: 6–24Google Scholar
  62. Willen, E. 1984. The large lakes of Sweden, Vänern, Vättern, Mälaren and Hjälmaren, p. 107134. InF. B. Taub [ed.], Ecosystems of the World 23. Lakes and Reservoirs. Elsevier. 2001. Four decades of research on the Swedish large Lakes Mälaren, HjälmaranGoogle Scholar
  63. Willen, E. 1984. Vättern and Värnern: the significance of monitoring and remedial measures for a sustainable society. Ambio 30: 458–466Google Scholar
  64. Wojciechowski, I., W. Wojciechowska, K. Czernas, J. Galek, and K. Religa. 1988. Changes in phytoplankton over a ten-year period in a lake undergoing de-eutrophication due to surrounding peat bogs. Arch. Hydrobiol. Suppl. 78: 373–387Google Scholar
  65. Burns, C. W., 1991. New Zealand Lakes Research, 1967–91 N. Z. J. Mar. and Fresh. Res. 25: 359–379CrossRefGoogle Scholar
  66. Burns, C. W., 1992. Population dynamics of crustacean zooplankton in a mesotrophic lake, with emphasis on Boeckella hamataBrehm (Copepodoa:Calanoida). Internat. Rev. der ges. Hydrob. 77: 553–577CrossRefGoogle Scholar
  67. Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, and K. L. Cottingham. 1987. Regulation of lake primary productivity by food-web structure. Ecology 68: 1863–1876CrossRefGoogle Scholar
  68. Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, and K. L. Cottingham., and K. L. Cottingham. 1997 Resilience and restoration in lakes. Cons. Ecol.Online 1 (1): 1–18Google Scholar
  69. Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, and K. L. Cottingham., D. Bolgrien, R. C. Lathrop, C. A. Stow, T. Reed, and M. A. Wilson 1998. Ecological and economic analyses of lake eutrophication by non-point pollution. Aust. J. Ecol. 23: 68–79Google Scholar
  70. Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, and K. L. Cottingham. and R. C. Lathrop. 1999. Lake Restoration: capabilities and needs. InD. M. Harper, B. Brierley, A. J. D. Ferguson and G. Phillips [eds.], The Ecological Bases for Lake and Reservoir Management. Hydrobiologia 395 /396: 19–28Google Scholar
  71. Chapman, M. A., J. D. Green, and V. H. Jolly. 1985. Relationships between zooplankton abundance and trophic state of seven New Zealand lakes. Hydrobiologia 123: 119–136CrossRefGoogle Scholar
  72. Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, and K. L. Cottingham., and J. D. Green. 1987. Zooplankton Ecology. p. 225–263. InA. B. Viner [ed.], Inland Waters of New Zealand. DSIR Science Information Publishing Center, Wellington, New ZealandGoogle Scholar
  73. Collier, K., A. B. Cooper, R. J. Davies-Colley, J. C. Rutherford, C. M. Smith, and R. B. Williamson. 1995. Managing Riparian Zones: A contribution to protecting New Zealand streams. Volume 2: Guidelines. Department of Conservation, Wellington, NZ, 142 pGoogle Scholar
  74. Crowl, T. A., C. R. Townsend, and A. R. Mcintosh. 1992. The impact of introduced brown and rainbow trout on native fish: the case of Australasia. Rev. Fish Biol. Fish 2: 21724CrossRefGoogle Scholar
  75. Demelo, R., R. France, and D. J. Mcqueen. 1992. Biomanipulation: Hit or myth? Limnol. Oceanogr. 37: 192–207Google Scholar
  76. Devito, K. J., I. F. Creed, R. L. Rothwell, and E. E. Prepas. 2000. Landscape controls on phosphorus loading to boreal lakes: impliucations for potential impacts of forest harvesting. Can. J. Fish. Aquat. Sci. 57: 1977–1984CrossRefGoogle Scholar
  77. Dillon, P. J. and F. H. Rigler. 1974. A test of a simple nutrient budget model predicting the phosphorus concentration in lake water. J. Fish. Res. Board Can. 31: 1771–1778CrossRefGoogle Scholar
  78. Downes, M. T., C. Howard-Williams and L. Schippper. 1997. Long and short roads to riparian zone restoration: nitrate removal efficiency p. 244–253. InN. E. Haycock, T. P. Burt, K. W. T. Goulding and B. Pinay [eds.], Buffer Zones: Their processes and Potential in Water Protection. Quest Environmental Publishers, Harpendon U.KGoogle Scholar
  79. Frankenberg, R. 1974. Native freshwater fish. p. 113–170. In W. D. Williams [ed.], Biogeography and Ecology in Tasmania. Dr. W. Junk Publishers, The Hague, NetherlandsGoogle Scholar
  80. Forsyth, D. J., and M. Lewis. 1987. Zoogeography: The invertebrates. p. 265–290. InA. B. Viner [ed.], Inland Waters of New Zealand. DSIR Science Information Publishing Center, WellingtonGoogle Scholar
  81. Gibbs, M. M., and F. E. Matheson. 2001. Lake-edge wetlands and their importance to the Rotorua lakes, p. 99–106. In Proceedings and report on a symposium on Research Needs of the Rotorua Lakes, Lakes Water Quality Society, Rotorua, New Zealand.Google Scholar
  82. Goldman, C. R., and A. J. Horne. 1983. Limnology. McGraw-Hill, New YorkGoogle Scholar
  83. Golterman, H. L. 1975. Physiological Limnology: An approach to the physiology of lake ecosystems. Elsevier Scientific Publishing Co. Amsterdam, 489 pGoogle Scholar
  84. Green, J. 1976. Population dynamics and production of the calanoid copepod Calamoecia lucasi ina northern New Zealand lake. Archiv fur Hydrobiol., Supplement 50: 313400Google Scholar
  85. Harper, D. M., B. Brierley, A. J. D. Ferguson, and G. Phillips, G. [eds.], 1999. The Ecological Bases for Lake and Reservoir Management. Hydrobiologia 395/396: 469p.Google Scholar
  86. Hawes, I., and R. Smith. 1993. Effect of localised nutrient enrichment on the shallow epilithic periphyton of oligotrophic Lake Taupo, N.w Zealand. N. Z. J. Mar. and Fresh. Res. 27: 365–372CrossRefGoogle Scholar
  87. Howard-Williams, C. 1986. Studies on the ability of a Potamogeton pectianatuscommunity to remove dissolved nitrogen and phosphorus compounds from lake water. J. Applied Ecol. 18: 619–637CrossRefGoogle Scholar
  88. Howard-Williams, C. S. Clayton, B. T. Coffey, and I. M. Johnnstone. 1987. Macrophyte invasions, p. 307–331. InA. B. Viner [ed.], Inland Waters of New Zealand. DSIR Science Information Publishing Center, WellingtonGoogle Scholar
  89. Howard-Williams, C., A-M. Schwarz, and V. Reid. 1996. Patterns of aquatic weed regrowth following mechanical harvesting in New Zealand hydro-lakes. Hydrobiologia 340: 229–234CrossRefGoogle Scholar
  90. Hosper, S. H. 1998. Stable states, buffers and switches: an ecosystem approach to the restoration and management of shallow lakes in the Netherlands. Wat. Sci. Tech. 3: 151–164Google Scholar
  91. Irvine, K., B. Moss, and H. Balls. 1989. The loss of submerged plants with eutrophication II. Relationships between fish and zooplankton in a set of experimental ponds, and conclusions. Fresh. Biol. 22: 89–107Google Scholar
  92. Jackson, P. D. 1981. Trout introduced into south-eastern Australia: their interaction with native fishes. Vict. Natural. 98: 18–24Google Scholar
  93. James, M. R., I. Hawes, M. Weatherhead, C. Stanger, and M. Gibbs. 2001. Carbon flow in the littoral food web of an oligotrophic lake. Hydrobiologia 441: 93–106CrossRefGoogle Scholar
  94. Jeppesen, E., M. Sondergaard, E. Mortensen, P. Kristensen, B. Riemann, H. J. Jensen, J. P. Moller, O. Sortkjaer, J. P. Jensen, K. Christoffersen, S. Bosselmann, and S. Dall. 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic temperate lakes. 1. Cross-analysis of three Danish case-studies. Hydrobiologia 200/201: 205–218Google Scholar
  95. Jeppesen, E., M. Sondergaard, E. Mortensen, P. Kristensen, B. Riemann, H. J. Jensen, J. P. Moller, O. Sortkjaer, J. P. Jensen, K. Christoffersen, S. Bosselmann, and S. Dall., J. P. Jensen, M. Sondergaard, T. Lauridsen, L. Junge, and L. Jensen. 1997a. Top-down control in fresh-water lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343: 151–164Google Scholar
  96. T. Lauridsen, S. F. Mitchell, and C. W. Burns. 1997b. Do planktivorous fish structure the zooplankton communities in New Zealand lakes. N. Z. J. of Mar. and Fresh. Res. 31: 163–173CrossRefGoogle Scholar
  97. T. Lauridsen, S. F. Mitchell, and C. W. Burns., T. L. Lauridsen, S. F. Mitchell, K. Christoffersen, and C. W. Burns2000. Trophic structure and the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. J. Plank. Res. 22: 951–968CrossRefGoogle Scholar
  98. T. Lauridsen, S. F. Mitchell, and C. W. Burns., M. Sondergaard, B. Krongvang, J. P. Jensen, L. M. Svendsen, and T. L.Lauridsen. 1999. Lake and catchment management in Denmark. Hydrobiologia 395/396: 419–432Google Scholar
  99. T. Lauridsen, S. F. Mitchell, and C. W. Burns., Jin, X. 1994. An analysis of lake eutrophication in China. Mitt. Internat. Verein. Limnol. 24: 207–211Google Scholar
  100. John, P. H., M. M. Gibbs, and M. T. Downes. 1978. Groundwater quality along the eastern shores of Lake Taupo 1975–1976. N. Z. J. of Mar. and Fresh. Res. 12: 59–66CrossRefGoogle Scholar
  101. Klinge, M., M. P. Grimm, and S. H. Hosper. 1995. Eutrophication and ecological rehabilitation of Dutch lakes: presentation of a new conceptual framework. Wat. Sci. Tech. 8: 207–218Google Scholar
  102. Krantz, T. K., K. E. Webster, C. J. Bowser, J. J. Magnuson, and B. J. Benson. 1997. The influence of landscape position on lakes in northern Wisconsin. Fresh. Biol. 37: 209–217Google Scholar
  103. Lagler, K. F. 1952. Freshwater Fishery Biology. Wm. C. Brown Company Publishers, Dobuque, Iowa, USA. p. 19–61Google Scholar
  104. Mcdowall, R. M. 1987. Impacts of exotic fishes on native fauna. P. 291–306. InA. B. Viner [ed.], Inland Waters of New Zealand. DSIR Science Information Publishing Center, WellingtonGoogle Scholar
  105. Mcdowall, R. M., 1990. Filling in the gaps — the introduction of exotic fishes into New Zealand. p. 68–92. InD. A. Pollard [ed.], Introduced and Translocated Fishes and their Ecological Effects. Proceedings of the 8th Australian Society for Fish Biology Workshop, Magnetic Island, 24–25 August 1989Google Scholar
  106. Mcdowall, R. M.. 2000. The Reed Field Guide to New Zealand Freshwater Fishes. Reed Publishing, Auckland. 224 pGoogle Scholar
  107. Macchi, P. J., V. E. Cussac, M. F. Alonso, and M. A. Denegri. 1999. Predation relationships between introduced salmonids and the native fish fauna in lakes and reservoirs in northern Patagonia. Ecol. Fresh. Fish 8: 227–236Google Scholar
  108. Mcqueen, D. J., M. R. S. Johannes, J. R. Post, T. J. Stewart, and D. R. S. Lean. 1989. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol. Monog. 59: 289–309CrossRefGoogle Scholar
  109. Mcqueen, D. J., M. R. S. Johannes, J. R. Post, T. J. Stewart, and D. R. S. Lean., 1998. Freshwater food web biomanipulation: A powerful tool for water quality improvement, but maintenance is required. Lakes and Reservoirs: Res. and Manage. 3: 83–94CrossRefGoogle Scholar
  110. Madgwick, F. J. 1999. Restoring nutrient-enriched shallow lakes: integration of theory and practice in the Norfolk Broads, U.K. Hydrobiologia 408/409: 1–12Google Scholar
  111. Meijer, M-L. E. Jeppesen, E. van Donk, B. Moss, M. Scheffer, E. Lammens, E. van Nes, J. A. Berkum, G. J. de Jong, B. A. Faafeeng, andJ. P. Jensen. 1994. Long-term responses to fish stock reduction in small shallow lakes: Interpretation of five year results of four bio-manipulation cases in the Netherlands and Denmark. Hydrobiologia 275/276: 457–466Google Scholar
  112. Moss, B., L. Carvalho, and J. Plewes. 2002. A lake at Llandrindod Wells — a restoration comedy ? Aquat. Cons. Mar. and Fresh. Syst. 12: 229–245CrossRefGoogle Scholar
  113. Nurnberg, G. K. 1984. The prediction of internal phosphorus load in lakes with anoxic hypolimnia. Limnol. Oceanogr. 29: 111–124Google Scholar
  114. OECD. 1982. Eutrophication of waters — monitoring, assessment and control. OECD, Paris. 154Google Scholar
  115. OECD. 1982. Eutrophication of waters — monitoring, assessment and control. OECD, Paris. 154 p.Google Scholar
  116. Ohle, W. 1982. Nährstoffzufuhren des Grebiner Sees durch atmosphärische Niederschläge und Oberflächenabschwemmung des Einzuigsgebietes. Arch Hydrobiol. 95: 331–363Google Scholar
  117. Padisak, J., and C. S. Reynolds. 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with sprcial reference to the cyanoprokaryotes. Hydrobiologia 384: 41–53Google Scholar
  118. Parker, J. F., and S. C. Maberley. 2000. Biological response to lake remediation by phosphate stripping:control of Cladophora. Fresh. Biol. 44: 303–309Google Scholar
  119. Phillips, G., A. Bramwell, J. Pitt, J. Stansfield, and M. Perrow. 1999. Practical application of 25 years’ research into the management of shallow lakes. Hydrobiologia 396/396: 61–76Google Scholar
  120. Portielje, R., and D. T. van der Molen. 1999. Relationships between eutrophication variables: from nutrient loading to transparency. Hydrobiologia 408/409: 375–387Google Scholar
  121. Sakamoto, M. 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on depth. Arch. Hydrobiol. 62: 1–28Google Scholar
  122. Sondergaard, M., E. Jeppesen, and J. P. Jensen. 2000. Hypolimnetic treatment to reduce internal phosphorus loading to a stratified lake. Lake and Reser. Manage. 16: 195–204Google Scholar
  123. Soto, D., and L. Zuniga. 1991. Zooplankton assemblages of Chilean temperate lakes: A comparison with North American counterparts. Revista Chilena de Historia Natural 64: 569–581Google Scholar
  124. Vant, B., and B. Huser., 2000. Effects of intensifying land-use on the water quality of Lake Taupo. Proc. N. Z. Soc. of Anim. Prod. 60: 261–264Google Scholar
  125. Vant, B., and B. Huser., 1987a. Eutrophication: An overview. In W. N. Vant [ed.], Lake Managers Handbook. National Water and Soil Conservation Authority, Wellington. Wat. and Soil Misc. Pub. 103: 151–157.Google Scholar
  126. Vant, B., and B. Huser., 1987 b. Lake Managers Handbook. National Water and Soil Conservation Authority, Wellington. Wat. and Soil Misc. Pub. 103: 230p.Google Scholar
  127. Vant, B., and B. Huser., and B. W. Gilliland 1991. Changes in water quality in Lake Horowhenua following sewage diversion. N. Z. J. Mar. Fresh. Res. 25: 57–61CrossRefGoogle Scholar
  128. Vant, B., and B. Huser., and R. A. Hoare. 1987. Determining the input rates of plant nutrients In W. N. Vant [ed.], Lake Managers Handbook. National Water and Soil Conservation Authority, Wellington. Wat. and Soil Misc. Publ. 103: 151–157.Google Scholar
  129. van Donk, E., and R. D. Gelati. 1989. Biomanipulation in the Netherlands. Proceedings of a symposium. Hydrobiol. Bull. 23: 1–99Google Scholar
  130. Varis, O. 1993. Cyanobacteria dynamics in a restored Finnish Lake: Long term simulation study. Hydrobiologia 268: 129–145CrossRefGoogle Scholar
  131. Vincent, W. F. 1983. Phytoplankton production and winter mixing: contrasting effects in two oligotrophic lakes. J. Ecol. 71: 1–20CrossRefGoogle Scholar
  132. Vant, B., and B. Huser., 1989. Cyanobacterial growth and dominance in two eutrophic lakes. Ergebnisse der Limnologie (Special Issue). 32: 1–254Google Scholar
  133. Viner, A. B., and E. W. White. 1987. Lake Plankton processes: Phytoplankton growth. p. 191–223. InA. B. Viner [ed.], Inland waters of New Zealand. DSIR Science Information Publishing Center, WellingtonGoogle Scholar
  134. Vollenweider, R. A. 1979. Das Nährstoffbelastungskonzept al s Grundlage fir den externen Eingriff in den Eutrophierungsprozess stehender Gewässer und Talsperren. Z. Wass Abwass. Forsch. 2/79: 45–56Google Scholar
  135. von Sperling, E. 1997. The process of biomass formation as the key point in the restoration of tropical eutrophic lakes. Hydrobiologia 342/343: 351–354Google Scholar
  136. White, E. W., 1982. Eutrophication in New Zealand lakes, p. 74–78. In Water in New Zealand’s Future; Proceedings of the 4th National Water Conference. Institution of Professional Engineers of New Zealand, Auckland.Google Scholar
  137. White, E. W., 1983. Lake eutrophication in New Zealand — a comparison with other countries of the Organisation for Economic Co-operation and Development. N. Z. J. Mar. and Fresh. Res. 17: 437–444CrossRefGoogle Scholar
  138. White, E. W., G. Payne, S. Pickmere, andP. Woods. 1986. Nutrient demand and availability related to growth among natural assemblages of phytoplankton. N. Z. J. Mar. and Fresh. Res. 20: 199–208CrossRefGoogle Scholar
  139. Williams, W. D. 1974. Freshwater Crustacea. p.113–170. In W. D. Williams [ed.], Biogeography and Ecology in Tasmania. Dr. W. Junk Publishers, The Hague, NetherlandsGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2003

Authors and Affiliations

  • Erik Jeppesen
    • 1
    • 2
  • Martin Søndergaard
    • 1
  • Jens Peder Jensen
    • 1
  • Torben L. Lauridsen
    • 1
  • Clive Howard-Williams
    • 3
  • David Kelly
    • 3
  1. 1.Dept. of Freshwater EcologyNational Environmental Research InstituteSilkeborgDenmark
  2. 2.Dept. of Botanical EcologyUniversity of AarhusRisskovDenmark
  3. 3.National Institute of Water and Atmospheric Research LtdChristchurchNew Zealand

Personalised recommendations