Advertisement

Perspectives on Environmental Monitoring

  • Richard D. Robarts
  • Andrew S. Fraser
  • Kelly M. Hodgson
  • Guy M. Paquette
  • Jean-Jacques Frenette
  • Warwick F. Vincent
  • Reinhard Pienitz

Abstract

Evaluation and assessment of fresh and inland water quality at the regional and global scales is not a simple task. UNEPs GEMS/Water has operated a comprehensive freshwater quality monitoring and assessment programme for over 20 years and is the only such global programme. GEMS/Water operates by inviting national governments to provide water quality data from their water quality monitoring programmes. The data is then compiled into a global database, GLOWDAT, which is a value-added process. GEMS/Water, United Nations agencies and other international organizations use the data to undertake global and regional scale water quality assessments. More than 100 countries participate in the programme that has a database of>1.6 million data entries. Participating countries control, for example, the type of data collected, the location of sampling sites, the frequency of monitoring, the analytical and field methods used and the frequency at which data is transferred to GEMS/Water. In order to make effective water quality assessments, identify emerging water quality issues and environmental ‘hotspots’, the data available must be of good quality, comparable between countries for a specific parameter, be geographically representative for a given region and be up-to-date. The only way for GEMS/Water to ensure that all these characteristics are satisfied in GLOWDAT would be for GEMS/Water to operate its own global water quality-monitoring programme. This is economically unfeasible. However, GEMS/Water has an operational manual, a modular training course and operates a QA/QC programme to help countries with data quality. Some countries have modernized their water quality programme, a complex and comprehensive activity that includes legal and institutional considerations, technical issues, and a strategic program of capacity building. Implementation of such comprehensive programmes in more countries will lead to better quality data for GEMS/Water.

Keywords

Water Quality Littoral Zone United Nations Environment Programme Water Quality Monitoring Colored Dissolve Organic Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CSD (Commission for Sustainable Development). 1997. Comprehensive assessment of the freshwater resources of the world. Stockholm Environment Institute and World Meteorological Organization, Geneva. 35 p.Google Scholar
  2. Hinrichsen, D., B. Robey, and U. D. Upadhyay. 1998. Solutions for a water-short world. Population Reports, Series M, No. 14, John Hopkins School of Public Health, Population Information Program, Baltimore. 31 p.Google Scholar
  3. Holmes, R. M., B. J. Peterson, A. V. Zhulidov, V. V. Gordeev, P. N. Makkaveev, P. A. Stunzhas, L. S. Kosmenko, G. H. Köhler, and A. I. Shiklomanov. 2001. Nutrient chemistry of the Ob’ and Yenisey Rivers, Siberia: Results from June 2000 expedition and evaluation of long-term data sets. Mar. Chem. 75: 219–227.Google Scholar
  4. Ongley, E. D. 1997. Matching water quality programs to management needs in developing countries: The challenge of program modernization. Euro. Wat. Pollut. Cont. 7: 43–48.Google Scholar
  5. Ongley, E. D. 2001. Water quality programs in developing countries: Design, capacity building, financing and sustainability. Wat. Internat. 26: 14–23.Google Scholar
  6. Ongley, E. D., and E. B. Ordonez. 1997. Redesign and modernization of the Mexican water quality monitoring network. Wat. Internat. 22: 187–194.Google Scholar
  7. Revenga, C., J. Brunner, N. Henninger, K. Kassem, and R. Payne. 2000. Pilot analysis of freshwater ecosystems. Freshwater systems. World Resources Institute, Washington, D.C.Google Scholar
  8. Shiklomanov, I. A. 2000. Appraisal and assessment of world water resources. Wat. Internat. 25: 11–32.Google Scholar
  9. Somlyödy, L., D. Yates, and O. Varis. 2001 Challenges to freshwater management. Ecohydrol. Hydrobiol. 1: 65–95.Google Scholar
  10. Zhulidov, A.V., J. V. Headley, D. F. Pavlov, R. D. Robarts, L. G. Korotova, V. V. Vinnikov, and O. V. Zhulidova. 2000a. Riverine fluxes of the persistent organochlorine pesticides hexachlorocyclohexane and DDT in the Russian Federation. Chemosphere. 41: 829–841.CrossRefGoogle Scholar
  11. Zhulidov, A.V., V. V. Khlobystov, R. D. Robarts, and D. F. Pavlov. 2000b. Critical analysis of water quality monitoring in the Russian Federation and former Soviet Union. Can. J. Fish. Aquat. Sci. 57: 1932–1939.CrossRefGoogle Scholar
  12. Belzile, C., W. F. Vincent, and M. Kumagai. 2002. Contribution of absorption and scattering to the attenuation of UV and photosynthetically available radiation in Lake Biwa. Limnol. Oceanogr. 47: 95–107.Google Scholar
  13. Effler, S. W., M. G. Perkins, and D. L. Johnson. 1991. Optical heterogeneity in Lake Champlain. J. Great Lakes Res. 17: 322–332.CrossRefGoogle Scholar
  14. Frenette, J.-J., S. Nakano, T. Nakajima, M. Kumagai, and C. Jiao. 1996. An Enclosure Experiment in a Eutrophic Area in Lake Biwa-Cyanobacterial control of light and temperature during algal succession. Japanese Society of Limnology Meeting. Hokkaido, September 25.Google Scholar
  15. Frenette, J.-J., W. F. Vincent, and L. Legendre. 1999. Size-dependent C:N uptake by phytoplankton as a function of irradiance: Ecological implications. Limnol. Oceanogr. 43: 1362–1368.Google Scholar
  16. M. T. Arts, and J. Morin. 2002. Spectral gradients of downwelling light in a fluvial lake (Lac Saint-Pierre, St-Lawrence River). Aquatic ecology. In apress.Google Scholar
  17. Gibson, J. A. E., W. F. Vincent, and R. Pienitz. 2000. Hydrologic control and diurnal photobleaching of CDOM in a subarctic lake. Arch. Hydrobiol. 152: 143–159.Google Scholar
  18. Guénette, S., Y. Mailhot, I. Mcquinn, P. Lamoureux, and R. Fortin. 1994. Paramètres biologiques, exploitation commerciale et modélisation de la Perchaude (Perca flavescens)du lac Saint-Pierre. Québec, Ministère de l’Environnement et de la Faune et Université du Québec à Montréal. 110 p.Google Scholar
  19. Kirk, J. T. O. 1994. Light and Photosynthesis in Aquatic Ecosystems. 2nd ed. Cambridge University Press, United Kingdom. 509 p.CrossRefGoogle Scholar
  20. Ishikawa, K., M. Kumagai, W. F. Vincent, S. Tsujimura, and H. Nakahara. 2002. Transport and accumulation of bloom-forming cyanobacteria in a large, mid-latitude lake: the gyre-Microcystishypothesis. Limnology 3: 87–96.CrossRefGoogle Scholar
  21. Langlois, C., L. Lapierre, M. Leveille, P. Turgeon, and C. Menard. 1992. Synthèse des connaisances sur les communautés biologiques du Lac Saint-Pierre. Rapport technique. Zone d’intérêt prioritaire. Centre Saint-Laurent, Conservation et Protection, Environment Canada. 236 p.Google Scholar
  22. Moran, M. A., W. M. Sheldon, and J. E. Sheldon. 1999. Biodegradation of riverine organic carbon in five estuairies of the southeastern United states. Estuaries 22: 55–64.CrossRefGoogle Scholar
  23. Mori, S., and T. Miura. 1990. List of plant and animal species living in Lake Biwa (corrected third edition).-Mem.Fac.Sci.Kyoto Univ. (Ser.B) 14: 14–22.Google Scholar
  24. Morris, D. P., and R. B. Hargreaves. 1997. The role of photochemical degradation of dissolved organic matter in regulating UV transparency of three lakes of the Plocono Plateau. Limnol. Oceanogr. 42: 239–249.Google Scholar
  25. Nakanishi, M., and T. Sekino. 1996. Recent drastic changes in Lake Biwa bio-communities, with special attention to exploitation of the littoral zone. GeoJournal 40: 63–67.Google Scholar
  26. Oliver, R. L. and G. G. Ganf. 2000. Freshwater blooms, p. 149–194. InB. A. Whitton, and M. Potts [eds.], The ecology of cyanobacteria. Kluwer Academic Publishers.Google Scholar
  27. Quesada, A., J-L. Mouget, and W. F. Vincent. 1995. Growth of Antarctic cyanobacteria under ultraviolet radiation: UVA counteracts UVB radiation. J. Phycol. 31: 242–248.CrossRefGoogle Scholar
  28. Roy, S. 2000. Strategies for the minimisation of UV-induced damage, p. 177–205. InS. J. De Mora, S. Demers and M. Vernet [eds.], The effects of UV radiation in the marine environment. Cambridge University Press, United Kingdom.Google Scholar
  29. Seehausen, O., J. J. M. Van Alphen, and F. Witte. 1997. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277: 1808–1811.CrossRefGoogle Scholar
  30. Smith, R. E. H., J. A. Furgal, M. N. Charlton, B. M. Greenberg, V. Hiriart, and C. Marwood. 1999. Attenuation of ultraviolet radiation in a large lake with low dissolved oxygen concentration. Can. J. Fish. Aquat. Sci. 56: 1351–1361.Google Scholar
  31. Sterner, R. W., J. Elser, E. J. Fee, S. J. Guildford, and T. M. Chrzanowski. 1999. Light:nutrient ratio in lakes: balance of energy and material affects ecosystem structure and process. Am. Nat. 150: 663–684.CrossRefGoogle Scholar
  32. Tsuda, R., and M. Nakanishi. 1988. The relative importance of Chlorophyll a, non-living suspended and dissolved matter to the vertical light attenuation in the North Basin of Lake Biwa. Mem.Fac. Sci. Kyoto Univ. (Ser.Biol.) 13: 101–109.Google Scholar
  33. Vincent, W. F., and J. J. Dodson. 1999. The need for an ecosystem-level understanding of large rivers: the Saint Lawrence River, Canada-USA. Japn J. Limnol. 60: 29–50.CrossRefGoogle Scholar
  34. Vincent, W. F., and P. J. Neale 2000. Mechanisms of UV damage to aquatic organisms, p. 149–176. InS. J. De Mora, S. Demers and M. Vernet [eds.], The effects of UV radiation in the marine environment. Cambridge University Press, United Kingdom.Google Scholar
  35. Vincent, W. F., M. Kumagai, C. Belzile, K. Ishikawa, and K. Hayakawa. 2001. Effects of seston on ultraviolet attenuation in Lake Biwa. Limnol. 2: 179–184.CrossRefGoogle Scholar
  36. Wainman, B. C., R. E. H. Smith, H. Rai, and J. A. Furgal. 1999. Irradiance and lipid production in natural algal populations, Chapter 3, p. 45–70. InM. T. Arts and B.C. Wainman [eds.], Lipids in Freshwater Ecosystems. Springer-Verlag. New York.CrossRefGoogle Scholar
  37. Waiser, M. J., and R. D. Robarts. 2000. Changes in composition and reactivity of allochthonous DOM in a prairie saline lake. Limnol. Oceanogr. 45: 763–774.Google Scholar
  38. Wetzel, R. G. 2001. Limnology. Academic press. San Diego.USA. 1006 p.Google Scholar
  39. Anderson, N. J., and B. V. Odgaard. 1994. Recent palaeolimnology of three shallow Danish lakes. Hydrobiologia 275 /276: 411–422.CrossRefGoogle Scholar
  40. Appleby, P. G. 2001. Chronostratigraphic techniques in recent sediments, p. 171–203. In W. M. Last and J. P. Smol [eds.], Tracking Environmental Change Using Lake Sediments, vol. 1, Basin Analysis, Coring, and Chronological Techniques. Kluwer Academic Publishers, Dordrecht.Google Scholar
  41. Bennion, H., S. Juggins, and N. J. Anderson. 1996. Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake management. Env. Sci. Technol. 30: 2004–2007.CrossRefGoogle Scholar
  42. Birks, H. J. B. 1995. Quantitative palaeoenvironmental reconstructions, p. 161–254. InD. Maddy and J. S. Brew [eds.], Statistical Modelling of Quaternary Science data, Technical Guide 5. Cambridge University Press, United Kingdom.Google Scholar
  43. Birks, H. J. B. 1998. Numerical tools in palaeolimnology — Progress, potentialities, and problems. J. Paleolimnol. 20: 307–332.CrossRefGoogle Scholar
  44. Blais, J. M., and J. Kalff. 1995. The influence of lake morphology on sediment focusing. Limnol. Oceanogr. 40: 582–588.Google Scholar
  45. Bradley, R. S. 1999. Paleoclimatology. Academic Press, San Diego, USA, 613 p.Google Scholar
  46. Bradshaw, E. G., N. J. Anderson, J. P. Jensen, and E. Jeppesen. 2002. Phosphorus dynamics in Danish lakes and the implications for diatom ecology and palaeoecology. Freshwat. Biol. 47: 1963–1975.Google Scholar
  47. Carignan, R., S. Lorrain, and K. Lum. 1994. A 50-year record of pollution by nutrients, trace metals and organic chemicals in the St-Lawrence River. Can. J. Fish. Aquat. Sci. 51: 1088–1100.CrossRefGoogle Scholar
  48. Christie, C. E., and J. P. Smol. 1993. Diatom assemblages as indicators of lake trophic status in southeastern Ontario lakes. J. Phycol. 29: 575–586.CrossRefGoogle Scholar
  49. Conley, D. J., and C. L. Schelske. 2001. Biogenic Silica, p. 281–293. InJ. P. Smol, H. J. B. Birks and W. M. Last [eds.], Tracking Environmental Change Using Lake Sediments, vol. 3, Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht.Google Scholar
  50. Dixit, S. S., J. P. Smol, J. C. Kingston, and D. F. Charles. 1992. Diatoms: Powerful indicators of environmental change. Environ. Sci. Technol. 26: 22–33.CrossRefGoogle Scholar
  51. Fritz, S. C., J. C. Kingston, and D. R. Engstrom. 1993. Quantitative trophic reconstruction from sedimentary diatom assemblages: a cautionary tale. Freshwat. Biol. 30: 1–23.Google Scholar
  52. Glew, J. R., J. P. Smol, and W. M. Last. 2001. Sediment core collection and extrusion, p. 73–105. InW. M. Last and J. P. Smol [eds.], Tracking Environmental Change Using Lake Sediments, vol. 1, Basin Analysis, Coring, and Chronological Techniques. Kluwer Academic Publishers, Dordrecht.Google Scholar
  53. Hall, R. I., and J. P. Smol. 1999. Diatoms as indicators of lake eutrophication, p. 128–168. In E. F. Stoermer and J. P. Smol [eds.], The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press.Google Scholar
  54. Hall, R. I., P. R. Leavitt, R. Quinlan, A. Dixit, and J. P. Smol. 1999. Effects of agriculture, urbanization, and climate on water quality on the Northern Great Plains. Limnol. Oeanogr. 44: 739–756.Google Scholar
  55. Jeppesen, E., E. A. Madsen, J. P. Jensen, and N. J. Anderson. 1996. Reconstructing the past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration data set from shallow lakes. Freshwat. Biol. 35: 115–127.Google Scholar
  56. Korsman, T., I. Renberg, E. Dabakk, and M. B. Nilsson. 2001. Near-infrared spectrometry (NIRS) in palaeolimnology, p. 299–317. In W. M. Last and J. P. Smol [eds.], Tracking Environmental Change Using Lake Sediments, vol. 2, Physical and Geochemical Methods. Kluwer Academic Publishers, Dordrecht.Google Scholar
  57. Koster, D., R. Pienitz, B. Wolfe, S. Barry, D. Foster, and S. Dixit. 2003. Human-induced impacts on the nutrient balance of Walden Pond during the last three centuries, as inferred by diatoms and stable isotopes. Can. J. Fish. Aquat. Sci. (submitted).Google Scholar
  58. Last, W. M., and J. P. Smol [eds.]. 2001. Tracking Environmental Change Using Lake Sediments, vol. 2, Physical and Geochemical Methods. Kluwer Academic Publishers, Dordrecht, 504 p.Google Scholar
  59. Leavitt, P. R., and D. A. Hodgson. 2001. Sedimentary pigments, p. 295–325. InW. M. Last, and J. P. Smol [eds.], Tracking Environmental Change Using Lake Sediments, vol. 2, Physical and Geochemical Methods. Kluwer Academic Publishers, Dordrecht.Google Scholar
  60. Pan, Y., and R. J. Stevenson. 1996. Gradient analysis of diatom assemblages in western Kentucky wetlands. J. Phycol. 32: 222–232.CrossRefGoogle Scholar
  61. Quinlan, R., J. P. Smol, and R. I. Hall. 1998. Quantitative inferences of past hypolimnetic anoxia in south-central Ontario lakes using fossil midges (Diptera: Chironomidae). Can. J. Fish. Aquat. Sci. 55: 587–596.CrossRefGoogle Scholar
  62. Rast, W., and M. Holland. 1988. Eutrophication of lakes and reservoirs: a framework for making management decisions. AMBIO 17: 2–12.Google Scholar
  63. Reavie, E. D., J. P. Smol, R. Carignan, and S. Lorrain. 1998. Paleolimnological reconstruction of two fluvial lakes in the St Lawrence River: A reconstruction of environmental changes during the last century. J. Phycol. 34: 446–56.CrossRefGoogle Scholar
  64. Reynolds, C. S. 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  65. Roberge, K., R. Pienitz, and S. Arsenault. 2002. Eutrophisation rapide du lac Saint-Augustin, Québec: étude paléolimnologique pour une reconstitution de la qualité de l’eau. Le Naturaliste Canadien 126: 68–82.Google Scholar
  66. Smol, J. P. 2002. Pollution of Lakes and Rivers: A Paleoenvironmental Perspective. Oxford University Press, USA. 280 p.Google Scholar
  67. Smol, J. P., H. J. B. Birks, and W. M. Last [eds.], 2001a. Tracking Environmental Change Using Lake Sediments, vol. 3, Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, 371 p.Google Scholar
  68. Smol, J. P., [eds.], 2001b. Tracking Environmental Change Using Lake Sediments, vol. 4, Zoological Indicators. Kluwer Academic Publishers, Dordrecht, 217 p.Google Scholar
  69. Stevenson, R. J., and J. P. Smol. 2003. Use of algae in environmental assessments, p. 775–804. InJ. D. Wehr and R. G. Sheath [eds.], Freshwater Algae of North America. Ecology and Classification. Academic Press, USA.CrossRefGoogle Scholar
  70. Ter Braak, C. J. F., and S. Juggins. 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.Google Scholar
  71. Tremblay, R., S. Legare, R. Pienitz, W. F. Vincent, and R. Hall. 2001. Etude paléolimnologique de l’histoire trophique du lac Saint-Charles, réservoir d’eau potable de la communauté urbaine de Québec. Revue des Sciences de l’Eau 14: 489–510.Google Scholar
  72. Uutala, A. J. 1990. Chaoborus (Diptera: Chaoboridae) mandibles-paleolimnological indicators of the historical status of fish populations in acid-sensitive lakes. J. Paleolimnol. 4: 139–151.CrossRefGoogle Scholar
  73. Vincent, W. F., and J. J. Dodson. 1999. The need for an ecosystem-level understanding of large rivers: the Saint-Lawrence River, Canada-USA. Japanese J. Limnol. 60: 29–50.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2003

Authors and Affiliations

  • Richard D. Robarts
    • 1
  • Andrew S. Fraser
    • 2
  • Kelly M. Hodgson
    • 2
  • Guy M. Paquette
    • 2
  • Jean-Jacques Frenette
    • 3
  • Warwick F. Vincent
    • 4
    • 5
  • Reinhard Pienitz
    • 5
  1. 1.UNEP GEMS/Water Programme OfficeEnvironment CanadaSaskatoonCanada
  2. 2.UNEP GEMS/Water Programme OfficeEnvironment CanadaBurlingtonCanada
  3. 3.Département de Chimie-BiologieUniversité du Québec à Trois-RivièresTrois-RivièresCanada
  4. 4.Département de BiologieUniversité LavalQuébecCanada
  5. 5.Centre d’études nordiquesUniversité LavalQuébecCanada

Personalised recommendations