Lessons from Lake Biwa and Other Asian Lakes: Global and Local Perspectives

  • Michio Kumagai
  • Warwick F. Vincent
  • Kanako Ishikawa
  • Yasuaki Aota


The freshwater resources of Asia are under enormous pressure given the high and increasing population densities of the region, and the serious degradation of many lakes and rivers due to agricultural, industrial and urban development. Global climate change is likely to exacerbate these pressures through changes in the hydrological balance; influences on stratification, algal blooms and deep water re-oxygenation; and for high altitude sites such as lakes on the Mongolian Plateau, accelerated permafrost melting and desertification. Eutrophication and other processes of water quality degradation are especially severe in many parts of China. At Lake Taihu, a drinking water supply for 40 million people in central China, toxic cyanobacterial blooms now occur throughout the year. In the Province of Yunnan, many of the shallow lake waters are highly polluted and are of human health concern. Lake Biwa, Japan’s largest freshwater body, has experienced many environmental problems over the last 50 years including loss of species habitat, changes in oxygen content, and blooms of noxious cyanobacteria. Two multi-disciplinary research programs involving specialists in hydrodynamics, bio-optics, biogeochemistry and freshwater ecology have generated new insights into the structure and functioning of the Lake Biwa ecosystem, and have contributed an improved understanding of the processes affecting water quality. The Biwako Transport Experiment (BITEX’93) provided new information about physical-biotic coupling in the lake, and revealed the stimulatory effects of typhoons on south basin populations of phytoplankton. Measurements of water currents also showed that toxic cyanobacteria can be transported via a reverse surface flow from the South to North Basins during typhoon events. A subsequent program, Cyanobacterial Risk Assessment at Biwako (CRAB), resulted in predictive bio-optical models and elucidated the importance of stratification and advection processes for cyanobacterial bloom development. The algal bloom populations are favored by diurnally stratified, nutrient-rich conditions inshore and are then advected via a gyre into the main basin of the lake where the cells can continue their growth on stored reserves. The successful management of Lake Biwa, and lakes elsewhere, will especially depend on an improved scientific understanding of the limnological controls on water quality. It will also be fostered by cross-disciplinary and international exchanges of information, and a commitment by scientists, residents and others with a vested interest in water quality, including regulatory authorities, to work together towards the common goal of long term, integrated protection of the lake and its surrounding watershed.


Chemical Oxygen Demand Cyanobacterial Bloom Autonomous Underwater Vehicle Microcystis Aeruginosa Deep Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belzile, C., W. F. Vincent, and M. Kumagai. 2002. Contribution of absorption and scattering to the attenuation of UV and photosynthetically available radiation in Lake Biwa. Limnol. Oceanogr. 47: 95–107.CrossRefGoogle Scholar
  2. Brown, L. R., and B. Halweil. 1998. China’s water shortage could shake world food security. World Watch. July/August: 10–18.Google Scholar
  3. Edmondson, W. T. 1991. The uses of ecology: Lake Washington and beyond. Univ. Washington Press.Google Scholar
  4. Elser, J., L. Gudea, M. Kyle, T. Ishikawa, and J. Urabe. 2001. Effects of zooplankton on nutrient availability and seston C:N:P stoichiometry in inshore waters of Lake Biwa, Japn. Limnology. 2: 91–100.Google Scholar
  5. Frenette, J-J., W. F. Vincent, L. Legendre, and T. Nagata. 1996a. Size-dependent phytoplankton responses to atmospheric forcing in Lake Biwa. J. Plank. Res. 18: 371–391.CrossRefGoogle Scholar
  6. Frenette, J-J., W. F. Vincent, and. T. Nagata. 1996b. Size-dependent changes in phytoplankton C and N uptake in the dynamic mixed layer of Lake Biwa. Freshwater Biol. 36: 221–236.Google Scholar
  7. Frenette, J-J., W. F. Vincent, and.T. Nagata., T. Nagata, K. Kawabata, and M. Kumagai. 1996c. Biological responses to typhoon-induced mixing in two morphological distinct basins of Lake Biwa. Japn. J. Limnol. 57: 501–510.Google Scholar
  8. Frenette, J-J., W. F. Vincent, and. T. Nagata. 1998. Size-dependent C:N uptake by phytoplankton as a function of irradiance: Ecological implications. Limnol. Oceanogr. 43: 1362–1368.Google Scholar
  9. Hashitani, H., M. Okumura, and Y. Seike. 1996. Determination of low levels of phosphate phosphorus in environmental waters by preconcentration using activated carbon loaded with zirconium. Japn. J. Limnol. 57: 479–484.Google Scholar
  10. Hayakawa, K., S. Tsujimura, G. E. Napolitano, S. Nakano, M. Kumagai, T. Nakajima, and C. jiao. 2002. Fatty acid composition as an indicator of physiological condition of the cyanobacterium Microcystis aeruginosa. Limnology. 3: 29–35.CrossRefGoogle Scholar
  11. Hayami, Y., T. Fujiwara, and M. Kumagai. 1996. Internal surge in Lake Biwa induced by strong winds of a typhoon. Japn. J. Limnol. 57: 425–444.Google Scholar
  12. Horie, S. [ed.]. 1984. Lake Biwa. Dordrecht. Junk.Google Scholar
  13. Hosoda, T., and T. Hosomi. 2002. A simplified model to predict seasonal variations of vertical water quality distributions in Lake Biwa and its applications. Advances in River Engineering. JSCE. 8: 495–500 (in Japanese).Google Scholar
  14. ISHIGURO, N. 2002. Some hypothesis concerning the oxygen supply at the bottom of Lake Geneva. Annals of Ochanomizu Geographical Society (Ochanomizu Chin). 43: 33–40 (in Japanese).Google Scholar
  15. ISHIKAWAT., and J. Urabe. 2002. Population dynamics and production of Jesogammarus annandalei, an endemic amphipod, in Lake Biwa, Japan. Freshwater Biol. 47: 1935–1943.Google Scholar
  16. ISHIKAWA,K., M. Kumagai, S. Nakano, and H. Nakahara. 1999. The influence of wind on the horizontal distribution of bloom-forming cyanobacteria in Akanoi Bay. Japn. J. Limnol. 60: 531–537.Google Scholar
  17. Ishikawa, K., M. Kumagai, S. Nakano, W. F. Vincent, S. Tsujimura, and H. Nakahara. 2002a. TransportGoogle Scholar
  18. Ishikawa, K., and accumulation of bloom-forming cyanobacteria in a large, mid-latitude lake: the gyre-Microcystis hypothesis, Limnology. 3: 87–96.Google Scholar
  19. Ishikawa, K., S. Tsujimura, W. F. Vincent, M. Kumagai, and H. Nakahara. 2002b. Growth of bloom-forming cyanobacteria under low nutrient conditions. Vech. Internat. Verein. Limnol. 28: 1–6.Google Scholar
  20. Jiao, C., and M. Kumagai. 1995. Large amplitude nonlinear internal surge in Lake Biwa. Japn. J. Limnol. 56: 279–289.Google Scholar
  21. Kawabata, K., and J. Urabe. 1996. Population dynamics of planktonic crustacea studied during BITEX’93. Japn. J. Limnol. 57: 545–552.Google Scholar
  22. Kimura, Y. 2001. Lake Biwa: the origin of the name. Omi Bunko (in Japanese).Google Scholar
  23. Krra, T. [ed.]. 1984. Data book of world lakes. Shiga Conference ‘84.Google Scholar
  24. Kumagai, M. 2001. Seeking wisdom in limnology. Limnology. 1: 1–2.CrossRefGoogle Scholar
  25. Kumagai, M. , K. Ishikawa, and C. Jiao. 200la. Gyre and its related ecosystem I Lake Biwa. In: Kada, Y., M. Kumagai, S. Terakawa, M. Terada, T. Nakajima, and T. Nunotani [eds.], Do you know about this lake? — 50 chapters talking about Lake Biwa. Sunrise Publishing (in Japanese).Google Scholar
  26. Kumagai, M., and H. Fushimi. 1995. Inflows due to snowmelt, p.129–139. In: Okuda, S., J. Imberger, and M. Kumagai [eds.], Physical processes in a large lake: Lake Biwa, Japan. Coastal and Estuarine Studies. AGU Washington, D.C.Google Scholar
  27. Kumagai, M., and H. Fushimi., and S. Nakano. [ed.]. 1996. Baseline Data Overviews of BITEX’93. Lake Biwa Stu. Monogr. LBRI.Google Scholar
  28. Kumagai, M., and H. Fushimi., C. JIAO, K. Hayakawa, S. Tsujimura, T. Nakajima, J-J. Frenette Google Scholar
  29. Kumagai, M.,and A. Quesada. 2000. Effect of cyanobacterial blooms on thermal stratification. Limnology 1: 191–195.CrossRefGoogle Scholar
  30. Kumagai, M., and R. Robarts. 1996. Biwako transport experiment’93. Japn. J. Limnol. 57: 367–558.Google Scholar
  31. Kumagai, M., C. Shimoda, R. Tsuda, and T. Kodama. 1996. Benthic and intermediate nepheloid layers in Lake Biwa. Japn. J. Limnol. 57: 445–455.Google Scholar
  32. Kumagai, M., T.Ura, Y.Kuroda, and R.Walker. 2001 b. A new autonomous underwater vehicle designed for lake environment monitoring. Advanced Robotics. 16: 17–26.Google Scholar
  33. Kumagai, M., and J. Urabe. 2002. Mongolian steppe and lake. Geography. 47: 50–55 (in Japanese).Google Scholar
  34. Kumagai, M., and J. Urabe., C.E. Goulden, N. Soninkhishig, D. Hadbaatar, S. Tsujimura, Y. Hayami, T. Sekino, and M. Maruo. 2003. Recent rise in water level at Lake Hövsgöl in Mongolia. In: Goulden, C.E., T. Sitnikova, J. Gelhaus, and B. Boldgiv [eds.], The Geology, Biodiversity and Ecology of Lake Hovsgol (Mongolia). Backhuys Belgium.Google Scholar
  35. Lieth, H. 1975. Modeling the primary productivity of the world, p.237–263. In Lieth, H. and R.H.Whittaker [eds.], Primary productivity of the biosphere. Springer-Verlag.Google Scholar
  36. Macintyre, S. 1996. Turbulent eddies and their implication for phytoplankton within the euphotic zone of Lake Biwa, Japan. Japn. J. Limnol. 57: 395–410.Google Scholar
  37. Masunaga, S., Y. YAO, I. Ogura, S. Nakai, M. Yamamuro, and J. Nakanishi. 2001. Identifying sources and mass balance of dioxin pollution in Lake Shinji Basin, Japan. Environ. Sci. Technol. 35: 1967–1973.Google Scholar
  38. Melack, J. M., M. Gastil, Y. Azuma, A. Harashima, and R. Tsuda. 1996. Remote sensing of chlorophyll, suspended solids and transparency in Lake Biwa, Japan. Japn. J. Limnol. 57: 367–375.Google Scholar
  39. Mori, S., and T. Miura. 1990. List of plant and animal species living in Lake Biwa. Mem. Fac. Sci. Kyoto Univ., Ser. Biol. 14: 13–32.Google Scholar
  40. Murphy, T., A. Lawson, M. Kumagai, and C. Nalewajiko. 2001. Release of phosphorus from sediments in Lake Biwa. Limnology 2: 119–128.CrossRefGoogle Scholar
  41. Murphy, T., M. Kumagai, and K. Irvine. 2002. The seasonal change in phosphorus dissolution in Lake Biwa sediments. Verh. Internat. Verein. Limnol. 28: 1–3.Google Scholar
  42. Murphy, T., M. and. 2002. Variation in potential for phosphorus release in Lake Biwa sediments. Yunnan Geographic Environ. Res. 14: 41–50.Google Scholar
  43. Nagata, T., T. Ogawa, J-J. Frenette, L. Legendre, and W. Vincent. 1996. Uncoupled responses of bacterial and algal production to storm-induced mixing in Lake Biwa. Japn. J. Limnol. 57: 533–543.Google Scholar
  44. Naka, K. 1973. Secular variation of oxygen change in the deep water of Lake Biwa. Japn. J. Limnol. 34: 41–43.Google Scholar
  45. Nakanishi, N., and M. Nagoshi. 1984. Yearly fluctuation of food habits of the Isaza, Chaenogobius isaza Tanaka, in Lake Biwa. Japn. J. Limnol. 45: 279–288 (in Japanese).Google Scholar
  46. Nakano, S., K. Hayakawa, J-J. Frenette, T. Nakajima, C. Jiao, S. Tsujimura, and M. Kumagai. 2001. Cyanobacterial blooms in a shallow lake: a large-scale enclosure assay to test the importance of diurnal stratification. Arch. Hydobiol. 150: 491–509.Google Scholar
  47. Nakano, S., Y. Seike, T. Sekino, M. Okumura, K. Kawabata, M. Nakanishi, O. Mitamura, M. Kumagai, and H. Hashitani. 1996. A rapid growth of Aulacoseira granulata (Bacillariophyceae) during the typhoon season in the South Basin of Lake Biwa. Japn. J. Limnol. 57: 493–500.Google Scholar
  48. Nalewajko, C., and T. Murphy. 2001. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach. Limnology 2: 45–48.CrossRefGoogle Scholar
  49. Nishino, M., M. Fukui, and T. Nakajima. 1998. Dense mat of Thioploca, gliding filamentous sulfur-oxydizing bacteria in Lake Biwa, Central Japan. Water Res. 32: 953–957.Google Scholar
  50. Nippon Astronomical Observatory. 2002. Chronological Scientific Tables. Maruzen (in Japanese).Google Scholar
  51. Niglas. 1990. Fuxian Lake. Ocean Press Beijing.Google Scholar
  52. Ogawa, N. O., T. Koitabashi, H. ODA, T. Nakamura, N. Ohkouchi, and E. Wada. 2001. Fluctuations of nitrogen isotope ratio of gobiid fish (Isaza) specimens and sediments in Lake Biwa, Japan, during the 20th century. Limnol. Oceanogr. 46: 1228–1236.Google Scholar
  53. Ogawa, T. and T. Nagata. 1996. Effects of storm disturbance on bacterial utilization of dissolved amino acids in the shallow, eutrophic South Basin of Lake Biwa. Japn. J. Limnol. 57: 523–531.Google Scholar
  54. Pu, P., M. Kumagai, and R. Robarts. [eds.]. 1998, ANSWER’97 Proceedings. J. Lake Sciences. 10: 1–597.Google Scholar
  55. Rmel. 2001, An international workshop on the restoration and management of eutrophicated lakes. Kunming, 1–227.Google Scholar
  56. Robarts, R., M. Waiser, O. Hadas, T. Zohar, and S. Macintyre. 1998. Relaxation of phosphorus limitation due to typhoon-induced mixing in two morphologically distinct basins of Lake Biwa, Japan. Limnol. Oceanogr. 43: 1023–1036.Google Scholar
  57. Saggio, A. and J. Imberger. 1998. Internal wave weather in a stratified lake. Limnol. Oceanogr. 43: 1780–1795.Google Scholar
  58. Sakai, S., S. Deguchi, S. Urano, H. Takatsuki, and K. Megumi. 1999. Time trend of PCDDs/DFs in Lake Biwa and Osaka Bay. J. Environ. Chem. 9: 379–390.Google Scholar
  59. Sakamoto, M., and T. Inoue. 1996. Typhoon-induced temporal change in plankton phosphorus in Lake Biwa. Japn. J. Limnol. 57: 511–522.Google Scholar
  60. Seike, Y., S. Nakano, M. Okumura, A. Hirayama, O. Mitamura, K. Fujinaga, M. Nakanishi, H. Hashitan, and M. Kumagai. 1996. Temporal variations in the nutritional state of phytoplankton communities in Lake Biwa due to typhoon. Japn. J. Limnol. 57: 485–492.Google Scholar
  61. Tanaka, Y., T. Kimoto, and R. Tsuda. 1996. Turbid water penetration from Yasu River into Lake Biwa at the seasonal thermocline. Japn. J. Limnol. 57: 457–465.Google Scholar
  62. Tanaka, and R. Tsuda. 1996. Daily fluctuations in thermal stratification, chlorophyll a, turbidity and dissolved oxygen concentration in Lake Biwa. Japn J. Limnol. 57: 377–393.Google Scholar
  63. Toda, T. 1996. Satellite thermal remote sensing in the BITEX’93 area. Japn. J. Limnol. 57: 553–558.Google Scholar
  64. Trevorrow, M. V. 1996. Multi-frequency Acoustic Measurements of near-surface air bubbles in Lake Biwa. Japn.n. J. Limnol. 57: 411–423.Google Scholar
  65. Trevorrow, and Y. Tanaka. 1997. Acoustic and in situ measurements of freshwater amphipods (Jesogammarus anandalei) in Lake Biwa, Japan. Limnol. Oceanogr. 42: 121–132.Google Scholar
  66. Urabe, J., and K. Kawabata. 1996. Grazing and food selection of zooplankton community in Lake Biwa during BITEX’93. Japn. J. Limnol. 57: 27–37.Google Scholar
  67. Vincent, W. F. 1989. Cyanobacterial growth and dominance in two eutrophic lakes: review and synthesis. Ergebnisse der Limnologie 32: 239–254.Google Scholar
  68. Vincent, M. M. Gibbs, and R. H. Spigel. 1991. Eutrophication processes regulated by a plunging river inflow. Hydrobiologia 226: 51–63.CrossRefGoogle Scholar
  69. Vincent, C. L. Vincent, M. T. Downes, and P. J. Richerson. 1985. Nitrate cycling in Lake Titicaca ( Peru-Bolivia ): The effects of high altitude and tropicality. Freshwater Biology 15: 31–42.CrossRefGoogle Scholar
  70. Vincent, M. Kumagai, C. Belzile, K. Ishikawa, and K. Hayakawa. 2001. Effects of seston on ultraviolet attenuation in Lake Biwa. Limnology. 2: 179–184.CrossRefGoogle Scholar
  71. Walker, R., and M. Kumagai. 2000. Image analysis as a tool for quantitative phycology–A computational approach to cyanobacterial taxa identification. Limnology. 1: 107–116.CrossRefGoogle Scholar
  72. Walker, R., K. Ishikawa, and M. Kumagai. 2002. Fluorescence-assisted image analysis of freshwater microalgae. Microbiological Methods. 51: 149–162.CrossRefGoogle Scholar
  73. Yamada, Y., T. Ueda, and E. Wada. 1996. Distribution of carbon and nitrogen isotope ratios in the Yodo River watershed. Japn. J. Limnol. 57: 467–477.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2003

Authors and Affiliations

  • Michio Kumagai
    • 1
  • Warwick F. Vincent
    • 2
  • Kanako Ishikawa
    • 1
  • Yasuaki Aota
    • 1
  1. 1.Lake Biwa Research InstituteOtsuJapan
  2. 2.Dépt de BiologieUniversité LavalQuébecCanada

Personalised recommendations