Application of High-Resolution Electron Microscopy

  • Daisuke Shindo
  • Kenji Hiraga


On the basis of the discussions in Chaps. 1 and 2, we now consider how to observe and interpret high-resolution images, with plenty of typical examples. In Sect. 3.1, high-resolution images of various structural defects are presented and explained. X-ray diffraction and neutron diffraction provide accurate structural information averaged throughout a crystal, whereas the advantage of high-resolution electron microscopy over the diffraction methods is that it provides direct information in real space of structural defects which are localized in crystals. High-resolution electron microscopy of lattice defects such as dislocations, interfaces, and surfaces, and also structural defects in non-stoichiometric compounds are presented in this section. Section 3.2 considers the appHcation of high-resolution electron microscopy to various advanced materials such as ceramics and high-Tc superconductors. Structural changes in alloys due to heat treatment and slight compositional changes, and the characteristic structural features of quasicrystals are also explained in detail.


Electron Diffraction Pattern Structure Image Lattice Image Partial Dislocation Atomic Arrangement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    For example, Hirth JP, Lothe J (1982) Theory of dislocations. Wiley, New YorkGoogle Scholar
  2. 2.
    Bollmann W (1956) Phys Rev 103:1588CrossRefGoogle Scholar
  3. 3.
    Hirsch PB, Home RW, Whelan MJ (1956) Philos Mag 1:677CrossRefGoogle Scholar
  4. 4.
    Shindo D, Yoo MH, Kanada S, Hiraga K (1991) Philos Mag A64:1281Google Scholar
  5. 5.
    Sato M, Hiraga K, Sumino K (1980) Jpn J Appl Phys 19:L155CrossRefGoogle Scholar
  6. 6.
    Hiraga K, Hirabayashi M, Sato M, Sumino K (1982) Crystallogr Res Tech 17:189CrossRefGoogle Scholar
  7. 7.
    Hirabayashi M, Hiraga K, Shindo D (1982) Ultramicroscopy, 9:197CrossRefGoogle Scholar
  8. 8.
    Kawabata T, Shindo D, Hiraga K (1992) Mater Trans JIM 33:565Google Scholar
  9. 9.
    Shindo D, Yoshida M, Lee BT, Takasugi T, Hiraga K (1995) Intermetalics 3:167CrossRefGoogle Scholar
  10. 10.
    Mills MJ, Miracle DB (1993) Acta Metall Mater 41:85CrossRefGoogle Scholar
  11. 11.
    Crimp MA, Tonn SC, Zhang Y (1993) Mater Sci Eng A170:95Google Scholar
  12. 12.
    Takasugi T, Hanada S, Yoshida M, Shindo D (1995) Philos Mag A71:347Google Scholar
  13. 13.
    Hiraga K, Oku T, Shindo D, Hirabayashi M (1989) J Electron Microsc Technol 12:228CrossRefGoogle Scholar
  14. 14.
    Alexander H, Spence JCH, Shindo D, Gottschalk H, Long N (1986) Philos Mag A53:627Google Scholar
  15. 15.
    Shindo D, Spence JCH, Alexander H, Long N, Vanderschaeve G (1986) Proceedings of the Xlth International Congress on Electron Microscopy, The Japanese Society of Electron Microscopy, Tokyo, Japan, p 785Google Scholar
  16. 16.
    Kolar HR, Spence JCH, Alexander H (1996) Phys Rev Lett 77:4031CrossRefGoogle Scholar
  17. 17.
    Crawford RC, Ray ILF, Cockayne DJH (1973) Philos Mag 27:1CrossRefGoogle Scholar
  18. 18.
    Lee BT, Pezzotti G, Hiraga K (1994) Mater Sci Eng A177:151Google Scholar
  19. 19.
    Pezzotti G, Lee BT, Hiraga K, Nishida T (1994) J Mater Sci 29:1786CrossRefGoogle Scholar
  20. 20.
    Hiraga K (1984) Sci Rep RITU A32:lGoogle Scholar
  21. 21.
    Hiraga K, Hirabayashi M, Niihara K, Hirai T (1984) Proceedings of the IXth International Conference on Chemical Vapor Deposition, The Electrochemical Society, Pennington, NJ, p 575Google Scholar
  22. 22.
    Pope DP, Ezz SS (1984) Int Metall Rev 29: 136Google Scholar
  23. 23.
    Aoki K, Izumi G (1979) J Jpn Inst Metals 43:1190Google Scholar
  24. 24.
    Emori H, Takasugi T, Hiraga K (1997) Philos Mag A75:1403Google Scholar
  25. 25.
    Takasugi T, Emori H, Hiraga K (1997) Philos Mag A75:1417Google Scholar
  26. 26.
    Ohnishi N, unpublished results (1992)Google Scholar
  27. 27.
    Hiraga K, Hirabayashi M, Ishigaki N (1986) J Micros 142:201CrossRefGoogle Scholar
  28. 28.
    Lee BT, Chun BS, Hiraga K (1994) J Mater Res 9:2519CrossRefGoogle Scholar
  29. 29.
    Hayashi S, Hirai T, Hiraga K, Hirabayashi M (1982) J Mater Sci 17:3336CrossRefGoogle Scholar
  30. 30.
    Hiraga K, Hirabayashi M, Hayashi S, Hirai T (1983) J Am Ceram Soc 66:539CrossRefGoogle Scholar
  31. 31.
    Higashi K (1993) Mater Sci Eng A166:109Google Scholar
  32. 32.
    Jeong Ha-Guk, Hiraga K, Mabuchi M, Higashi K (1996) Philos Mag Lett 74:73CrossRefGoogle Scholar
  33. 33.
    Takayanagi K, Tanishiro Y, Takahashi S, Takahashi M (1985) Surface Sci 164:367CrossRefGoogle Scholar
  34. 34.
    Suzuki T, Tanishiro Y, Minoda H, Yagi K (1993) Surface Sci 298:473CrossRefGoogle Scholar
  35. 35.
    Ichihashi T, lijima S (1994) Proceedings of the 13th International Congress on Electron Microscopy, Paris, vol 2B, Les Editions de Physique, Les Ulis, France, p 1013Google Scholar
  36. 36.
    Oku T, Hiraga K, Shindo D, Nakajima S, Tokiwa A, Kikuchi M, Syono Y (1996) In: Narliker A (ed) Studies of high temperture superconductors. Noba Science, Commack, NYGoogle Scholar
  37. 37.
    Sugimoto T, Muramatsu A, Sakata K, Shindo D (1993) J Colloid Interface Sci 158:420CrossRefGoogle Scholar
  38. 38.
    Shindo D, Park GS, Waseda Y, Sugimoto T (1994) J Colloid Interface Sci 168:478CrossRefGoogle Scholar
  39. 39.
    Terasaki O, Ohsuna T (1995) Catal Today 23:201CrossRefGoogle Scholar
  40. 40.
    Hyde BG, Andersson S (1988) Inorganic crystal structures. Wiley-Interscience, New YorkGoogle Scholar
  41. 41.
    Kikuchi M, Kusaba K, Bannai E, Fukuoka K, Syono Y, Hiraga K (1985) Jpn J Appl Phys 24:1600CrossRefGoogle Scholar
  42. 42.
    Barbier J, Hiraga K, Otero-Diaz LC, White TJ, Williams TB, Hyde BG (1985) Ultramicroscopy 18:211CrossRefGoogle Scholar
  43. 43.
    Shindo D, Hiraga K, Oku T, Oikawa T (1991) Ultramicroscopy 39:50CrossRefGoogle Scholar
  44. 44.
    Lee BT, Hiraga K (1993) Mater Trans JIM 34:930Google Scholar
  45. 45.
    Lee BT, Hiraga K, Shindo D, Nishiyama A (1994) J Mater Sci 29:959CrossRefGoogle Scholar
  46. 46.
    Lee BT, Hiraga K (1994) J Mater Res 9:1199CrossRefGoogle Scholar
  47. 47.
    Lee BT, Hiraga K unpublished results (1993)Google Scholar
  48. 48.
    Bednorz JG, Müler KA (1986) Z Phys B64:189CrossRefGoogle Scholar
  49. 49.
    Wu MK, Ashburn JR, Torng CJ, Hor PH, Meng RL, Huang ZJ, Wang YQ, Chu CW (1987) Phys Rev Lett 58:908CrossRefGoogle Scholar
  50. 50.
    Hiraga K, Shindo D, Hirabayashi M, Kikuchi M, Oh-ishi K, Syono Y (1987) Jpn J Appl Phys 26:L1071CrossRefGoogle Scholar
  51. 51.
    Hiraga K, Shindo D, Hirabayashi M, Kikuchi M, Syono Y (1987) J Electron Microsc 36:261Google Scholar
  52. 52.
    Oku T, Hiraga K, Shindo D, Kikuchi M, Nakajima S, Syono Y (1991) Proceedings of the 3rd International Symposium on Superconductivity (ISS ’90), Springer, Berlin Heidelberg Tokyo, Japan, p 367Google Scholar
  53. 53.
    Hiraga K, Shindo D, Hirabayashi M, Kikuchi M, Kobayashi N, Syono Y (1988) Jpn J Appl Phys 27:L1848CrossRefGoogle Scholar
  54. 54.
    Hiraga K, Shindo D, Kikuchi M, Nakajima S (1988) JEOL News 26E:28Google Scholar
  55. 55.
    Oku T, Kajitani T, Hiraga K, Hosoya S, Shindo D (1991) Physica C 185–189:547CrossRefGoogle Scholar
  56. 56.
    Ogawa S, Hirabayashi M, Watanabe D, Iwasaki H (1997) Long-period ordered alloys. Agne Gijutsu Center, Tokyo, JapanGoogle Scholar
  57. 57.
    Shindo D (1982) Acta Crystallogr A38:310Google Scholar
  58. 58.
    Shindo D, Hirabayashi M (1988) Acta Crystallogr A44:954Google Scholar
  59. 59.
    Kuwano N, Toki M, Tanaka N, Eguchi T (1980) 7th European Congress on Electron Microscopy Foundation, Antwerp. Electron Microsc 4:166Google Scholar
  60. 60.
    Van Dyck D, Van Tendeloo G, Amerinckx S (1982) Ultramicroscopy 10:263CrossRefGoogle Scholar
  61. 61.
    Màki J (1986) Phys Stat Solidi 95a:51Google Scholar
  62. 62.
    Hiraga K, Shindo D, Hirabayashi M (1981) J Appl Crystallogr 14:185CrossRefGoogle Scholar
  63. 63.
    Terasaki O, Watanabe D, Hiraga K, Shindo D, Hirabayashi M (1981) J Appl Crystallogr 14:392CrossRefGoogle Scholar
  64. 64.
    Shindo D, Hiraga K, Hirabayashi M (1984) Sci Rep RITU A32:32Google Scholar
  65. 65.
    Tanaka N, Cowley JM (1987) Acta Crystallogr A43:337Google Scholar
  66. 66.
    Watanabe D, Ohsuna T, Kimoto T (1993) Ultramicroscopy 52:465CrossRefGoogle Scholar
  67. 67.
    Hiraga K, Hirabayashi M, Terasaki O, Watanabe D (1982) Acta Crystallogr A38:269Google Scholar
  68. 68.
    Hiraga K, Shindo D, Hirabayashi M, Terasaki O, Watanabe D (1980) Acta Crystallogr B36:2550Google Scholar
  69. 69.
    Lee KH, Hiraga K, Shindo D, Hirabayashi M (1988) Acta Metall 36:641CrossRefGoogle Scholar
  70. 70.
    Spruiell JE, Stanbury EE (1965) J Phys Chem Solids 26:811CrossRefGoogle Scholar
  71. 71.
    De Ridder R, Van Tendeloo G, Amerinck S (1976) Acta Crystallogr A32:216Google Scholar
  72. 72.
    Hata S, Fujita H, Matsumura S, Kuwano N, Oki K, Shindo D (1995) Abstract of the 117th Meeting of the Japan Institute for Metals in Hawaii. The Japan Institute of Metals, Sendai, Japan, p 96Google Scholar
  73. 73.
    Hirabayashi M, Hiraga K, Shindo D (1981) J Appl Crystallogr 14:169CrossRefGoogle Scholar
  74. 74.
    Sato H, Toth RS (1961) Phys Rev 124:1833CrossRefGoogle Scholar
  75. 75.
    Shechtman D, Blech I, Gratias D, Cahn JW (1984) Phys Rev Lett 53:1951CrossRefGoogle Scholar
  76. 76.
    Levine D, Steinhardt PJ (1984) Phys Rev Lett 53:2477CrossRefGoogle Scholar
  77. 77.
    Hiraga K, Bo-ping Zhang, Hirabayashi M, Inoue A, Masumoto T (1988) Jpn J Appl Phys 27:L951CrossRefGoogle Scholar
  78. 78.
    Hiraga K, Lincoln FJ, Sun W (1991) Mater Trans JIM 32:308Google Scholar
  79. 79.
    Field RD, Fraser HL (1984–85) Mat Sci Eng 68:L17CrossRefGoogle Scholar
  80. 80.
    Hiraga K, Hirabayashi M, Inoue A, Masumoto T (1985) Sci Rep RITU A32:309Google Scholar
  81. 81.
    Hiraga K, Hirabayashi M, Inoue A, Masumoto T (1987) J Microsc 146:245CrossRefGoogle Scholar
  82. 82.
    Hiraga K, Hirabayashi M (1987) J Electron Microsc 36:353Google Scholar
  83. 83.
    Hiraga K (1989) Mater Res Soc Symp Proc 139:125CrossRefGoogle Scholar
  84. 84.
    Hiraga K, Lee KH, Hirabayashi M, Tsai AP, Inoue A, Masumoto T (1989) Jpn J Appl Phys 28:L1624CrossRefGoogle Scholar
  85. 85.
    Guryan CA, Goldman AI, Stephens PW, Hiraga K, Tsai AP, Inoue A, Masumoto T (1989) Phys Rev Lett 62:2409CrossRefGoogle Scholar
  86. 86.
    Hiraga K, Hirabayashi M (1987) Jpn J Appl Phys 26:L155CrossRefGoogle Scholar
  87. 87.
    Hiraga K (1991) Quasicrystals: The state of the art. Directions in: DiVincenzo DP, Steinhardt PJ (eds) Condensed Matter Physics 11:95Google Scholar
  88. 88.
    Hiraga K (1992) Electron Microscopy, EUREM 92. Secretariado de Publicaciones de la Universidad de Granada, vol 2, p 485Google Scholar
  89. 89.
    Hiraga K (1991) J Electron Microsc 40:81Google Scholar
  90. 90.
    Hiraga K (1990) Springer Ser Solid-State Sci 93:68CrossRefGoogle Scholar
  91. 91.
    Hiraga K, Kaneko M, Matsuo Y, Hashimoto S (1993) Philos Mag B67:193Google Scholar
  92. 92.
    Sun W, Yubuta K, Hiraga K (1995) Philos Mag B71:71Google Scholar
  93. 93.
    Hiraga K, Sun W (1993) Philos Mag Lett 67:117CrossRefGoogle Scholar
  94. 94.
    Hiraga K, Sun W (1993) J Phys Soc Jpn 62:1833CrossRefGoogle Scholar
  95. 95.
    Hiraga K, Abe E, Matsuo Y (1993) Philos Mag Lett 70:163CrossRefGoogle Scholar
  96. 96.
    Matsuo Y, Hiraga K (1994) Philos Mag Lett 70:155CrossRefGoogle Scholar
  97. 97.
    Hiraga K (1991) Sci Rep RITU A36:115Google Scholar
  98. 98.
    Hiraga K, Sun W, Yamamoto A (1994) Mater Trans JIM, 35:657Google Scholar
  99. 99.
    Hiraga K (1995) In: Chapuis G, Paciorek W (eds) Proceedings of the International Conference on Aperiodic Crystals (Aperiodic ’94), World Scientific Publishing, Singapore, p 341Google Scholar
  100. 100.
    Hiraga K (1997) In: Hawkes PW (ed) Advances in imaging and electron physics. Academic Press, New York, p 37Google Scholar

Copyright information

© Springer-Verlag Tokyo 1998

Authors and Affiliations

  • Daisuke Shindo
    • 1
  • Kenji Hiraga
    • 2
  1. 1.Institute for Advanced Materials ProcessingTohoku UniversityAoba-ku, Sendai, MiyagiJapan
  2. 2.Institute for Materials ResearchTohoku UniversityAoba-ku, Sendai, MiyagiJapan

Personalised recommendations