Advertisement

Food Poisoning by Ginkgo biloba Seeds

  • Keiji Wada
  • Masanobu Haga

Abstract

Gin-nan is the Japanese word for the seed of Ginkgo biloba L. The albumen of the seed is used as a crude drug and food in China and Japan. In particular, it is used as an antitussive and expectorant in traditional medicine. However, when this substance has been taken to excess during food shortages, “Gin-nan food poisoning” has sometimes occurred in Japan [1–35] and China [36–37]. Figure 1 shows the numbers of patients with gin-nan food poisoning in Japan in our survey [1–38]. The symptoms of this poisoning are mainly convulsions and loss of consciousness. Infants and particularly children under 6 years of age made up about 74% of all patients (Fig. 2). The consequences are not serious for survivors, but mortality is about 27% in Japan.

Keywords

Ginkgo Biloba Gaba Concentration Pyridoxal Phosphate Clonic Convulsion Isonicotinic Acid Hydrazide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kudo K (1981) Does the Ginkgo seed contain large amounts of cyanogenetic glycosides (in Japanese)? Tokyo Iji Shinshi 149: 19–21Google Scholar
  2. 2.
    Marui H (1928) Gin-nan food poisoning (in Japanese). Iji Koron 858: 7–8Google Scholar
  3. 3.
    Kurashima S (1931) Three cases of Gin-nan food poisoning (in Japanese). Hokuetsu Igakukai Zasshi 46: 525 - 532Google Scholar
  4. 4.
    Marui H (1933) Gin-nan food poisoning (in Japanese). Igaku Chishiki 1: 98Google Scholar
  5. 5.
    Takahashi R (1934) Gin-nan food poisoning (in Japanese). Shindan To Chiryo 21: 627–628Google Scholar
  6. 6.
    Hara M (1938) Gin-nan food poisoning (in Japanese). Shindan To Chiryo 25: 1560–1561Google Scholar
  7. 7.
    Kobayashi S (1943) A case of Gin-nan food poisoning (in Japanese). Jika Shinryo 9: 448–453Google Scholar
  8. 8.
    Nishimoto S (1944) A case of Gin-nan food poisoning (in Japanese). Jika Shinryo 10: 79–80Google Scholar
  9. 9.
    Aida M (1944) A third case of Gin-nan food poisoning (in Japanese). Jika Shinryo 10: 81–83Google Scholar
  10. 10.
    Hukushi K (1994) An autopsy case of Gin-nan food poisoning (in Japanese). Nihon Byorigakkai-kaishi 34: 11Google Scholar
  11. 11.
    Shiomi T (1951) A case of Gin-nan food poisoning with a kind of baryencephalia (in Japanese). Shindan To Chiryo 39: 392–395Google Scholar
  12. 12.
    Suzuki K (1951) A case of puerile Gin-nan food poisoning (in Japanese). Jika Shinryo 14: 561–562Google Scholar
  13. 13.
    Fujiwara H (1952) Gin-nan food poisoning (in Japanese). Kyoto Igakukai Zasshi 3: 260–262Google Scholar
  14. 14.
    Sakurada A (1952) A case of Gin-nan food poisoning (in Japanese). Jika Shinryo 15: 428Google Scholar
  15. 15.
    Takano T, Kobayashi M, Wada I (1952) Gin-nan food poisoning in experimental animals (in Japanese). Monthly Report of Tokyo Metropolitan Research Laboratory of Public Health 41: 46Google Scholar
  16. 16.
    Uruno K (1953) Gin-nan food poisoning (in Japanese). Jika Shinryo 16: 195–197Google Scholar
  17. 17.
    Takano T, Kobayashi M, Wada I (1953) Study on Gin-nan food poisoning in experimental animals (in Japanese). Jui Chikusan Shinpo 109: 353–357Google Scholar
  18. 18.
    Yano Y (1953) A case of Gin-nan food poisoning (in Japanese). Rinsho To Kenkyu 30: 469–471Google Scholar
  19. 19.
    Ohara T (1955) A case of Gin-nan food poisoning (in Japanese). Shonika Shinryo 18: 920Google Scholar
  20. 20.
    Kobayashi M (1956) Study on the toxic substance in Ginkgo seeds II (in Japanese). Nippon Eiseigaku Zasshi 11: 41Google Scholar
  21. 21.
    Yoshida R, Asari Y (1957) A case of Gin-nan food poisoning (in Japanese). Shonika Shinryo 20: 572Google Scholar
  22. 22.
    Okada K (1957) A case of Gin-nan food poisoning (in Japanese). Shonika Shinryo 20: 572Google Scholar
  23. 23.
    Hosokai M, Ishikawa E (1957) A case of puerile Gin-nan food poisoning (in Japanese). Shonika Shinryo 20: 1116–1117Google Scholar
  24. 24.
    Ito T, Kobayashi M (1958) Study on the toxic substance in Ginkgo seeds III (in Japanese). Nippon Eiseigaku Zasshi 13: 54Google Scholar
  25. 25.
    Kobayashi M (1959) Study on the toxic substance in Ginkgo seeds (in Japanese). Nagano-ken Eisei Kenkyusho Chosa Kenkyu Hokoku 16: 1–12Google Scholar
  26. 26.
    Ito H, Ebisu S (1959) A case of puerile Gin-nan food poisoning (in Japanese). Shonika Shinryo 22: 101–104Google Scholar
  27. 27.
    Takeuchi K, Kokuho Y, Iijima S (1967) Two cases of Gin-nan food poisoning (in Japanese). Shonika Shinryo 30: 987Google Scholar
  28. 28.
    Yokoi Y, Shimizu K, Inagaki H (1979) Two cases of Gin-nan food poisoning (in Japanese). Shonika Shinryo 42: 1638Google Scholar
  29. 29.
    Tasumi M, Nakazawa A, Iwamoto H (1982) A case of Gin-nan food poisoning (in Japanese). Shonika Shinryo 45: 2013Google Scholar
  30. 30.
    Wada K (1986) Ginkgo biloba and Gin-nan food poisoning (in Japanese). Kagaku To Yakugaku No Kyoshitsu 95: 79–82Google Scholar
  31. 30.
    Nomoto F, Kubota F (1989) Gin-nan food poisoning (in Japanese). Seishin Igaku 31: 535–538Google Scholar
  32. 32.
    Naito H (1990) Gin-nan (Ginkgo seeds) (in Japanese). Chugai Iyaku 43: 50–51Google Scholar
  33. 33.
    Ishizawa J, Tsujikawa A, Ohashi T (1990) Gin-nan food poisoning (in Japanese). Gekkan Yakuji 32: 2444–2445Google Scholar
  34. 34.
    Kokubo M, Terada A, Hayakawa S, Maeda K, Matumoto N, Wada K (1993) A case of Gin-nan food poisoning (in Japanese). Shonika Shinryo 56: 488–491Google Scholar
  35. 35.
    The Epidemiological Data of Food Poisoning in Japan. (1955-1983) Koseisho Seikatsu-eisei-kyoku Shokuhinhoken-ka (ed) Nippon Shokuhin Eisei Kyokai, Tokyo (in Japanese)Google Scholar
  36. 36.
    Suzuki S (1975) Kokuyaku Honzoh Kohmoku, vol 8, Ginkgo biloba (in Japanese), Shunyodo Shoten Tokyo, pp 407–411Google Scholar
  37. 37.
    Nan S, Shu T (1958) Two cases of Gin-nan food poisoning ( In Chinese), and references cited therein. Chuka Jika Zasshi 483 - 484Google Scholar
  38. 38.
    Wada K (1996) Studies on the constituents of edible and medicinal plants to affect the metabolizing system in mammals (in Japanese with English abstract). Natural Medicines 50: 195–203Google Scholar
  39. 39.
    Suzu M (1959) An examination of plums and ginkgo-nuts for cyanophoric glycoside (in Japanese). Fukuoka Igaku Zasshi 50: 5394–5398Google Scholar
  40. 40.
    Nishijima M, Kanmuri M, Takahashi S, Kamimura H, Nakazato M, Watari Y, Kimura Y (1975) Survey of cyanide in almond (in Japanese). Tokyo-To Eisei Kenkyusho Nempo 26: 183–186Google Scholar
  41. 41.
    Wada K, Ishigaki S, Ueda K, Sakata M, Haga M (1985) An antivitamin B6, 4′- methoxypyridoxine from the seed of Ginkgo biloba L. Chem Pharm Bull 33: 3555–3557PubMedCrossRefGoogle Scholar
  42. 42.
    Wada K, Ishigaki S, Ueda K, Take Y, Sasaki K, Sakata M, Haga M (1988) Studies on the constitution of edible and medicinal plants. I. Isolation and identification of 4-0- methylpyridoxine, toxic principle from the seed of Ginkgo biloba L. Chem Pharm Bull 36: 1779–1782PubMedCrossRefGoogle Scholar
  43. 43.
    Ott WH (1947) Antipyridoxine activity of methoxypyridoxine in the chick. Proc Soc Exp Biol Med 66: 215 - 216PubMedGoogle Scholar
  44. 44.
    Kopeloff LM, Chusid JG (1963) Methoxypyridoxine convulsions in epileptic and non-epileptic mice. Protective action of pyridoxine. Proc Soc Exp Biol Med 114:496- 500Google Scholar
  45. 45.
    Julou L, Pasquet J, Ducrot R (1964) The antidotic effect of pyridoxine on one of the intermediary products of its manufacture which has a strong toxicity. Proc of European Society for the Study of Drug Toxicity 4: 179 - 189Google Scholar
  46. 46.
    Mizuno N, Kawakami K, Morita E (1980) Competitive inhibition between 4′- substituted pyridoxine analogues and pyridoxal. For pyridoxal kinase from mouse brain. J Nutr Sei Vitaminol 26: 535-543Google Scholar
  47. 47.
    Gammon GD, Gummit R (1957) Observations on the mechanism of seizures induced by a pyridoxine antagonist, methoxypyridoxine. Trans Amer Neurol Assoc 82: 57 - 59Google Scholar
  48. 48.
    Ozawa S, Okada Y (1976) Decrease of GABA levels and the appearance of a depolarization shift in thin hippocampal slice in vitro. In: Roberts E, Chase TN, Tower DB (eds) GABA in nervous system function. Raven, New York, pp 449 - 454Google Scholar
  49. 49.
    Nitsh C, Okada Y (1976) Decrease of GABA levels in different parts of the rabbit brain after treatment with methoxypyridoxine. In: Roberts E, Chase TN, Tower DB (eds) GABA in nervous system function. Raven, New York, pp 455 - 460Google Scholar
  50. 50.
    Umbreit WW (1955) Vitamin B6 Antagonists. Amer J Clin Nutrition 3: 291 - 297Google Scholar
  51. 51.
    Kamrin RP, Kamrin AA (1961) The effects of pyridoxine antagonists and other convulsive agents on amino acid concentrations of the mouse brain. J Neurochemistry 6: 219 - 225CrossRefGoogle Scholar
  52. 52.
    Elliot KAC (1965) y-Aminobutyric acid and other inhibitory substitutes. Brit Med Bull 21:70-75Google Scholar
  53. 53.
    Wiechert P, Herbst A (1966) Provocation of cerebral seizures by derangement of the natural balance between glutamic acid and y-aminobutyric acid. J Neurochem 13:59- 64Google Scholar
  54. 54.
    Steiner FA, Ruf K (1967) Interaction of L-glutamic acid gamma-amino butyric acid and pyridoxal-5′-phosphate at the neuronal level. Schweizer Archiv für Neurologie, Arch Neurol Neurochirurgie und Psychiatrie 100: 310-320Google Scholar
  55. 55.
    Yoshida T, Tada K, Arakawa T (1971) Vitamin B6-dependency of glutamic acid decarboxylase in the kidney from a patient with vitamin B6 dependent convulsion ( In Japanese ). Tohoku J Exp Med 104: 195-198Google Scholar
  56. 56.
    Cherayil GD, Cyrus AE Jr (1972) Effect of 4-methoxymethyl-pyridoxine on ganglio- sides, cholesterol and fatty acids in mouse brain. J Neurochem 19: 1215 - 1219PubMedCrossRefGoogle Scholar
  57. 57.
    Bukin Yu V, Sergeev AV, Kondrat′eva G Ya (1976) Effects of some 2-alkyl and 4′-0- methyl analogs of pyridoxol on the activity of pyridoxal kinase from mouse liver (in Russian). Biokhimiya 41: 432 - 442Google Scholar
  58. 58.
    Minami M, Yanai A, Endo T, Hamaue M, Hamaue N, Monma Y, Wada K, Haga M, Morii K, Yoshioka M, Saito H (1990) Convulsion induced by 4-O-methylpyridoxine, from the seed of the Ginkgo biloba L., in guinea pigs and rats. Life Sei Adv 9: 107 - 115Google Scholar
  59. 59.
    Kraft Von HG, Fiebig L, Hotovy R (1961) Pharmacology of vitamin B6 and its derivatives (in German). Arzneimitel-Forsh 10: 922 - 929Google Scholar
  60. 60.
    Oja SS, Kontro P (1978) In: Barbeau A, Huxtable RJ (eds) Taurine and neurological disorders, Raven, New York, pp 181 - 200Google Scholar
  61. 61.
    Hirai H, Okada Y (1993) Ipsilateral corticotectal pathway inhibits the formation of long-term potentiation ( LTP) in the rat superior colliculus through GABAergic mechanism. Brain Res 629: 23-30Google Scholar
  62. 62.
    Yagi M, Wada K, Sakata M, Kokubo M, Haga M (1993) Studies on the constituents of edible and medicinal plants. IV. Determination of 4-O-methylpyridoxine in serum of the patient with gin-nan food poisoning (in Japanese with English abstract). Yakugaku Zasshi 113: 596 - 599PubMedGoogle Scholar
  63. 63.
    Take Y, Sasaki K, Wada K, Sakata M, Haga M (1987) Studies on the plant food poisoning III. The determination of toxic principle, 4′-methoxypyridoxine in the seed of Ginkgo biloba with HPLC. The 107th Annual meeting of Pharmaceutical Society of Japan, KyotoGoogle Scholar
  64. 64.
    Huff JW, Perlzweig WA (1944) A product of oxidative metabolism of pyridoxine, 2- methyl-3-hydroxy-4-carboxy-5-hydroxy-methylpyridine (4-pyridoxic acid) I. Isolation from urine, structure, and synthesis. J Biol Chem 155: 345-355Google Scholar
  65. 65.
    Schwartz R, Kjeldgaard NO (1951) The enzymic oxidation of pyridoxal by liver aldehyde oxidase. Biochem J 48: 333 - 337PubMedGoogle Scholar
  66. 66.
    Shane B, Snell EE (1975) Metabolism of 5′-deoxypyridoxine in rats: 5′- deoxypyridoxine 4′-sulphate as a major urinary metabolite. Biochem Biophys Res Comm 66: 1294 - 1300PubMedCrossRefGoogle Scholar
  67. 67.
    Coburn SP, Mahuren JD (1976) In vivo metabolism of 4′-deoxypyridoxine in rat and man. J Biol Chem 251: 1646 - 1652PubMedGoogle Scholar
  68. 68.
    Huh H, Staba EJ (1992) The botany and chemistry of Ginkgo biloba L. J Herbs, Spices Med Plants 1: 91-124Google Scholar
  69. 69.
    Wada K, Sasaki K, Miura K, Yagi M, Kubota Y, Matsumoto T, Haga M (1993) Isolation of bilobalide and ginkgolide A from Ginkgo biloba L. shorten the sleeping time induced in mice by anesthetics. Biol Pharm Bull 16: 210 - 212PubMedCrossRefGoogle Scholar
  70. 70.
    Takagaki G (1981) Neurobiochemistry. In: Kyoritsu Zensho, vol 238 (in Japanese). Kyoritsu Shuppan, Tokyo, pp 72 - 75Google Scholar
  71. 71.
    Yoshimura I, Hayata M, Yamasaki F, Mori H (eds) (1996) Natural toxin. In: Acute toxicity information file (in Japanese). Hirokawa, TokyoGoogle Scholar
  72. 72.
    Arenz A, Klein M, Fiehe K, Groß J, Drewke C, Hemscheidt T, Leistner E (1996) Occurrence of neurotoxic 4′-0-methylpyridoxine in Ginkgo biloba leaves, Ginkgo medications and Japanese Ginkgo food. Planta Med 62: 548-551Google Scholar

Copyright information

© Springer-Verlag Tokyo 1997

Authors and Affiliations

  • Keiji Wada
    • 1
  • Masanobu Haga
    • 1
  1. 1.Faculty of Pharmaceutical SciencesHealth Sciences University of HokkaidoHokkaidoJapan

Personalised recommendations