Tolerance and Susceptibility of Ginkgo to Air Pollution

  • Yoon Soo Kim
  • Jae Kee Lee
  • Gap Chae Chung


Trees face a variety of environmental stresses and must endure conditions unfavorable for their growth. The stress induced by numerous anthropogenic stress factors can, however, be calculated to a critical threshold value by morphological and physiological adaptations of woody plants. If the sum of the various stresses exceeds this critical value, trees start to develop symptoms in the plant organs [1].


Simulated Acid Rain Pinus Densiflora Leaf Injury Conifer Needle Ginkgo Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fowden L, Mansfield T, Stoddart J (eds) (1993) Plant adaptation to environmental stress. Chapman and Hall, LondonGoogle Scholar
  2. 2.
    Braun HJ, Sauter JJ (1983) Unterschiedliche Symptome des Waldsterbens im Schwarzwald, moegliche Kausalketten und Basis in Ursache. Allg Forst Ztg 38: 656–660Google Scholar
  3. 3.
    Jensch UE, Jager HJ (1983) Zum Nachweis der Wirkung von Luftverunreinigungen auf die Vegetation durch physiologische und biochemische Reaktionen von Pflanzen. Angew Bot 57: 157–171Google Scholar
  4. 4.
    Kozlowsik TT, Constantinidou HA (1986) Responses of woody plants to environmental pollution. For Abstr 47: 1–51Google Scholar
  5. 5.
    Kozlowski TT, Constantinidou HA (1986) Environmental pollution and tree growth. For Abstr 47: 105–132Google Scholar
  6. 6.
    Baker EA, Hunt GM (1986) Erosion of waxes from leaf surfaces by simulated rain. New Phytol 102: 161–173CrossRefGoogle Scholar
  7. 7.
    Raven PH, Evert RF, Eichhorn SL (1986) Biology of plants, 4th edn. Worth, New YorkGoogle Scholar
  8. 8.
    Smith WH (1981) Air pollution and forests. Springer-Verlag, New YorkGoogle Scholar
  9. 9.
    Reineret RA (1984) Plant response to air pollutant mixtures. Annu Rev Phytopathol 22: 421–442CrossRefGoogle Scholar
  10. 10.
    Karhu M, Huttunen S (1986) Erosion effects of air pollution on needle surfaces. Water Air Soil Pollut 31: 417–423CrossRefGoogle Scholar
  11. 11.
    Hasemann G, Jung G, Wild A (1990) The loss of structural integrity in damaged spruce needles from locations exposed to air pollution. II. Epidermis and stomata (dermal tissue). J Phytopathol (Berl) 128: 33–35CrossRefGoogle Scholar
  12. 12.
    Schutt P, Schuck HJ (1972) Zusammenhaenge zwishchen Rauchhaerte und Cuticularwachsen bei Koniferen. Mitt Forstl Bundesversuchanst Wien 97: 399 - 417Google Scholar
  13. 13.
    Percy KE, Baker EA (1987) Effects of simulated acid rain on production, morphology and composition of epicuticular wax and on cuticular membrane development. New Phytol 107: 577–589CrossRefGoogle Scholar
  14. 14.
    Percy KE, Baker EA (1988) Effects of simulated acid rain on leaf wettability, rain retention and uptake of some inorganic ions. New Phytol 108: 75–82CrossRefGoogle Scholar
  15. 15.
    Grill D, Pfeifhofer H, Halbwachs G, Waltinger H (1987) Investigations on epicuticular waxes of differently damaged spruce needles. Eur J For Pathol 17: 246–255CrossRefGoogle Scholar
  16. 16.
    Huttunen S (1994) Effects of air pollutants on epicuticular wax structures. In: Percy KE et al. (eds) Air pollutants and the leaf cuticle. Springer, Berlin Heidelberg New York, pp 82–96 (NATO ASI Series, vol G 36 )Google Scholar
  17. 17.
    Kim YS (1985) REM Beobachtungen immissionsgeschaedigter Fichtennadeln. Centralbl Gesamte Forstwes 102: 96–105Google Scholar
  18. 18.
    Swiecke TT, Endress AG, Taylor OC (1982) The role of surface wax in susceptibility of plants to air pollutant injury. Can J Bot 60: 316–319CrossRefGoogle Scholar
  19. 19.
    Oh JW, Kim YG, Chae JS (1987) Studies on the periodical changes of air pollution at several forest stands. In: Effects of air pollution and acid precipitation on the forest ecosystem (in Korean, summary in English). Ministry of Science and Technology, Seoul, pp 49–69Google Scholar
  20. 20.
    Oh JW, Chae JS, Yi CK (1983) Effects of atmospheric sulfur dioxide concentration on the growth of some tree species (in Korean, abstract in English). Bull Korean Forest Res Inst 30: 243–258Google Scholar
  21. 21.
    Kim GT (1987) Effects of simulated acid rain on growth and physiological characteristics of Ginkgo biloba L. seedlings and on chemical properties of the tested soil. I. Seed germination and growth. II. L. af surface area, visible leaf injury, leaf chlorophyll content and photosynthetic ability of the leaf tissue. J Korean For Sci 76:99–108, 230–240Google Scholar
  22. 22.
    Davis DD, Gerhold HD (1976) Selection of trees for tolerance of air pollutants. In: Santamour FS, Gerhold HD, Little S (eds) Better trees for metropolitan landscapes. Gen Tech Rep NE For Exp Stn USDA For Serv NE-22:61–66Google Scholar
  23. 23.
    Weinstein LH (1977) Fluoride and plant life. J Occup Med 19: 49–78PubMedCrossRefGoogle Scholar
  24. 24.
    Davis DD, Wilhour RG (1976) Susceptibility of woody plants to sulfur dioxide and photochemical oxidants. EPA-600/3–76–102. U.S. Environmental Protection Agency, Corvallis, ORGoogle Scholar
  25. 25.
    Karnosky DF (1978) Selection and testing program for developing air pollution tolerant trees for urban areas. Proceedings, IUFRO air pollution meeting, Institute of Forest and Wood Economy Ljubljana, pp 233–242Google Scholar
  26. 26.
    Kim YS, Lee JK (1990) Chemical and structural characteristics of conifer needles exposed to ambient air pollution. Eur J For Pathol 20: 193–200CrossRefGoogle Scholar
  27. 27.
    Oh JW (1986) Effects of simulated acid rain on the growth of trees and soil. Master’s thesis, Kyung Hee University, SeoulGoogle Scholar
  28. 28.
    Lee KH, Chung GC, Lee JS (1993) Effects of simulated acid rain on stomatal resistance, wettability and anatomical changes in Quercus acutissima and Ginkgo biloba seedlings. J Korean For Soc 82: 328–336Google Scholar
  29. 29.
    Adams CM, Dengler NG, Hutchingson TC (1984) Acid rain effects on foliar histology of Artemisia tilesii. Can J Bot 62: 463–474CrossRefGoogle Scholar
  30. 30.
    Chung GC, Kim YS, Lee SH (1994) Physiological and morphological responses of perilla and cucumber to simulated acid rain. J Korean Soc Hortic Sci 35: 587–592Google Scholar
  31. 31.
    Novick NJ, Klein TM, Alexander M (1984) Effect of simulated acid precipitation on nitrogen mineralization and nitrification in forest soils. Water Air Soil Pollut 23: 317–330CrossRefGoogle Scholar
  32. 32.
    Rather TM, Frink CR (1984) Simulated acid rain: effects on leaf quality and yield of broad leaf tobacco. Water Air Soil Pollut 22: 389–394Google Scholar
  33. 33.
    Turkey HB Jr (1980) Some effects of rain and mist on plants with implications for acid precipitation. In: Hutchinson TC, Havas M (eds) Effects of acid precipitation on terrestrial ecosystem. Plenum, New York, pp 141–150Google Scholar
  34. 34.
    Rinallo C, Raddi P, Gellini R, Di Lonardo V (1986) Effects of simulated acid deposition on the surface structure of Norway spruce and silver fir needles. Eur J For Pathol 16: 440–446CrossRefGoogle Scholar
  35. 35.
    Rinallo C, Raddi P (1989) Effects of simulated acid rain and ABS on leaf surfaces of some broadleaf seedlings. Eur J For Pathol 19: 151–160CrossRefGoogle Scholar
  36. 36.
    Neufeld HS, Jernstedt JA, Haines BL (1985) Direct foliar effects of simulated acid rain. I. Damage, growth and gas exchange. New Phytol 99: 389–495CrossRefGoogle Scholar
  37. 37.
    Valentini R, Scarascia-Mugnozza G, De Angelis P, Monaco R (1989) Short-term effects of simulated acid mist on gas exchange of Eucalyptus globulus. Eur J For Pathol 19: 200–205CrossRefGoogle Scholar
  38. 38.
    Esau K (1977) Anatomy of seed plants, 2nd edn. Wiley, New York, pp 321–372Google Scholar
  39. 39.
    Neidner H, Mansfield TA (1968) Physiology of stomata. McGraw-Hill, LondonGoogle Scholar
  40. 40.
    Schmidt U, Rutze M, Liese W (1987) REM Untersuchungen an Stomata von Fichtenund Tannenadeln nach Begasung und saurer Beregnung. Eur J For Pathol 17: 118–124CrossRefGoogle Scholar
  41. 41.
    Raddi P, Monicca S, Paoletti E (1994) Effects of acid rain and surfactant pollution on the foliar structure of some tree species. In: Percy KE et al. (eds) Air pollutants and the leaf cuticle. Springer, Berlin Heidelberg New York, pp 205-216 (NATO ASI Series vol G 36 )Google Scholar
  42. 42.
    Dietrich H (1994) Ginkgo biloba—ein Überlebensstratege im Pflanzenreich. In: Schmid M, Schmol GED (eds) Ginkgo Ur-Barum und Arzneipflanze Mythos, Dichtung und Kunst. Wissenschaftl Verlagsgesell, Stuttgart, pp 15–22Google Scholar
  43. 43.
    Beuchert M (1995) Symbolik der Pflanzen. Insel Verlag, Frankfurt, pp 110–115Google Scholar
  44. 44.
    Evans LS (1984) Acidic precipitation effects on terrestrial vegetation. Annu Rev Phytopathol 22: 393–420CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1997

Authors and Affiliations

  • Yoon Soo Kim
    • 1
  • Jae Kee Lee
    • 1
  • Gap Chae Chung
    • 2
  1. 1.Department of Forest Product and TechnologyChonnam National UniversityKwangjuKorea
  2. 2.Department of HorticultureChonnam National UniversityKwangjuKorea

Personalised recommendations