Skip to main content

Molecular Phylogeny of Ginkgo biloba: Close Relationship Between Ginkgo biloba and Cycads

  • Chapter
Ginkgo Biloba A Global Treasure

Abstract

Morphological characters have been widely used to infer phylogenetic relationships of organisms. Difficulty of distinction between plesiomorphic and apomorphic characters because of homoplasy or excess morphological diversity has often necessitated subjective character evaluation by authors, which has resulted in controversies among differently inferred phylogenetic trees. Recent progress in molecular biology has made possible the use of information on genome organization and macromolecule sequences in systematics, which is useful to evaluate previously proposed phylogenetic studies based on morphological characters. Especially in distantly related taxa like gymnosperms in which character evaluation is puzzling, molecular phylogeny is expected to be a powerful tool for inference of phylogenetic relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Downie SR, Palmer JD (1992) use of chloroplast DNA rearrangements in reconstructing plant phylogeny. in: Soltis PS, Soltis DE, Doyle JJ (eds) molecular systematics of plants. Chapman and Hall, New York, pp 14–35

    Chapter  Google Scholar 

  2. Palmer JD, Stein DB (1986) conservation of chloroplast genome structure among vascular plants. Curr Genet 10: 823–834

    Google Scholar 

  3. Raubeson LA, Jansen RK (1992) chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255: 1697–1699

    Google Scholar 

  4. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng B-Y, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) the complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. Embo J 5: 2043–2049

    Google Scholar 

  5. Strauss SH, Palmer JD, Howe GT, Doerksen AH (1988) chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proc Natl Acad Sci USA 85: 3898–3902

    Google Scholar 

  6. Tsudzuki J, Nakashima K, Tsudzuki T, Hiratsuka J, Shibata M, Wakasugi T, Sugiura M (1992) chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trnQ, trnK, psbA, trnI and trnH and the absence of rpsl6. Mol Gen Genet 232: 206–214

    Google Scholar 

  7. Suzuki J, Bauer CE (1992) light-independent chlorophyll biosynthesis: involvement of the chloroplast gene, chlL. Plant Cell 4: 929–940

    Google Scholar 

  8. Yamada K, Matsuda M, Fujita Y, Matsubara H, Sugai M (1992) A frxC homologue exists in the chloroplast DNAs from various pteridophytes and in gymnosperms. Plant Cell Physiol 33: 325–327

    CAS  Google Scholar 

  9. Burke DH, Raubeson LA, Alberti M, Hearst JE, Jordan ET, Kirch SA, Valinski AEC, Conant DS, Stein DB (1993) The chlL (frxC) gene: phylogenetic distribution in vascular plants and DNA sequence from Polystichum acrostichoides (Pteridophyta) and Synechococcus sp. 7002 (Cyanobacteria). Plant Syst Evol 187: 89–102

    Article  CAS  Google Scholar 

  10. Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, Krön KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedren M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Equiarte LE, Golenberg E, Learn GH Jr, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann MO Bot Gard 80: 528–580

    Article  Google Scholar 

  11. Manhart JR (1994) Phylogenetic analysis of green plant rbcL sequences. Mol Phylogenet Evol 3: 114–127

    Article  PubMed  CAS  Google Scholar 

  12. Mishler BD, Lewis LA, Buchheim MA, Renzaglia KS, Garbary DJ, Delwiche CF, Zechman FW, Kantz TS, Chapman RL (1994) Phylogenetic relationships of the green algae and bryophytes. Ann MO Bot Gard 81: 451–483

    Article  Google Scholar 

  13. Hasebe M, Omori T, Nakazawa M, Sano T, Kato M, Iwatsuki K (1994) RbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proc Natl Acad Sci USA 91: 5730–5734

    Google Scholar 

  14. Hasebe M, Wolf PG, Pryer KM, Ueda K, Ito M, Sano R, Gastony GJ, Yokoyama J, Manhart JR, Murakami N, Crane EH, Haufler CH, Hauk WD (1995) Fern phylogeny based on rbcL nucleotide sequences. Amer Fern J 85: 134–181

    Article  Google Scholar 

  15. Wolfe KH, Gouy M, Yang Y-W, Shart PM, Li W-H (1989) Date of the monocotdicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86: 6201–6205

    Article  PubMed  CAS  Google Scholar 

  16. Hasebe M, Kofuji R, Ito M, Kato M, Iwatsuki K, Ueda K (1992) Phylogeny of gymnosperms inferred from rbcL gene sequences. Bot Mag Tokyo 105: 673–679

    Article  CAS  Google Scholar 

  17. Goremykin V, Bobrova V, Pahnke J, Troitsky A, Antonov A, Martin W (1996) Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL do not support Gnetalean affinities of angiosperms. Mol Biol Evol 13: 383–396

    PubMed  CAS  Google Scholar 

  18. Hiesel R, Combettes B, Brennicke A (1994) Evidence for RNA editing in mitochondria of all major groups of land plants except the Bryophyta. Proc Natl Acad Sci USA 91: 629–633

    Article  PubMed  CAS  Google Scholar 

  19. Hiesel R, von Haeseler A, Brennicke A (1994) Plant mitochondrial nucleic acid sequences as a tool for phylogenetic analysis. Proc Natl Acad Sci USA 91: 634–638

    Article  PubMed  CAS  Google Scholar 

  20. Chinn E, Silverthorne J (1993) Light-dependent chloroplast development and expression of a light-harvesting chlorophyll a/b-binding protein gene in the gymnosperm Ginkgo biloba. Plant Physiol (Rockv) 103: 727–732

    Article  CAS  Google Scholar 

  21. Chinn R, Silverthorne J, Hohtola A (1995) Light-regulated and organ-specific expression of types 1, 2, and 3 light-harvesting complex b mRNAs in Ginkgo biloba. Plant Physiol (Rockv) 107: 593–602

    Article  CAS  Google Scholar 

  22. Jansson S, Meyer-Gauen G, Cerff R, Martin W (1994) Nucleotide distribution in gymnosperm nuclear sequences suggests a model for GC-content change in land-plant nuclear genomes. J Mol Evol 39: 34–46

    Article  PubMed  Google Scholar 

  23. Häger K-P, Braun H, Czihal A, Müller B, Bäumlein H (1995) Evolution of seed storage protein genes: legumin genes of Ginkgo biloba. J Mol Evol 41: 457–466

    Article  PubMed  Google Scholar 

  24. Arahira M, Fukazawa C (1994) Ginkgo 11S seed storage protein family mRNA: unusual Asn-Asn linkage as post-translational cleavage site. Plant Mol Biol 25: 597–605

    Article  PubMed  CAS  Google Scholar 

  25. Mathews S, Lavin M, Sharrock RA (1995) Evolution of the phytochrome gene family and its utility for phylogenetic analyses of angiosperms. Ann MO Bot Gard 82: 296–321

    Article  Google Scholar 

  26. Voytas DF, Cummings MP, Konieczny A, Ausubel FA, Rodermel SR (1992) Copialike retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89: 7124–7128

    Article  PubMed  CAS  Google Scholar 

  27. Flavell A, Dunbar E, Anderson R, Pearch SR, Hartley R, Kumar A (1992) Tyl-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20: 3639–3644

    Article  PubMed  CAS  Google Scholar 

  28. Hirochika H, Hirochika R (1993) Tyl-copia group retrotransposons as ubiquitous components of plant genomes. Jpn J Genet 68: 35–46

    Article  PubMed  CAS  Google Scholar 

  29. Hamby RK, Zimmer EA (1992) Ribosomal RNA as a phylogenetic tool in plant systematics. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, New York, pp 50–91

    Chapter  Google Scholar 

  30. Hori H, Lim B-L, Osawa S (1985) Evolution of green plants as deduced from 5S rRNA sequences. Proc Natl Acad Sci USA 82: 820–823

    Article  PubMed  CAS  Google Scholar 

  31. Nickrent DL, Soltis DE (1995) A comparison of angiosperm phylogenies from nuclear 18S rDNA and rbcL sequences. Ann MO Bot Gard 82: 208–234

    Article  Google Scholar 

  32. Chaw S-M, Long H, Wang B-S, Zharkikh A, Li W-H (1993) The phylogenetic position of Taxaceae based on 185 rRNA sequences. J Mol Evol 37: 624–630

    Article  PubMed  CAS  Google Scholar 

  33. Chaw S-M, Sung H-M, Long H, Zharkikh A, Li W-H (1995) The phylogenetic positions of the conifer genera Amentotaxus, Phylloclasdus and Nageia inferred from 185 rRNA sequences. J Mol Evol 41: 224–230

    Article  PubMed  CAS  Google Scholar 

  34. Doyle JA, Donoghue MJ, Zimmer EA (1994) Integration of morphological and ribosomal RNA data on the origin of angiosperms. Ann MO Bot Gard 81: 419–450

    Article  Google Scholar 

  35. Troitsky AV, Melekhovets YF, Rakhimova GM, Bobrova VK, Valiejo-Roman KM, Antonov AS (1991) Angiosperm origin and early stages of seed plant evolution deduced from rRNA sequence comparisons. J Mol Evol 32: 253–261

    Article  PubMed  CAS  Google Scholar 

  36. Grane PR (1985) Phylogenetic analysis of seed plants and the origin of angiosperms. Ann MO Bot Gard 72: 716–793

    Article  Google Scholar 

  37. Doyle JA, Donoghue MJ (1986) Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot Rev 52: 321–431

    Article  Google Scholar 

  38. Laconte H, Stevenson DW (1990) Cladistics of the Spermatophyta. Brittonia 42: 197–211

    Article  Google Scholar 

  39. Nixon KC, Crepet WL, Stevenson DW, Friis EM (1994) A réévaluation of seed plant phylogeny. Ann MO Bot Gard 81: 484–533

    Article  Google Scholar 

  40. Rothwell GW, Serbet R (1994) Lignophyte phylogeny and the evolution of spermatophytes: a numerical cladistic analysis. Syst Bot 19: 443–482

    Article  Google Scholar 

  41. Rothwell GW (1994) Phylogenetic relationships among ferns and gymnosperms; an overview. J Plant Res 107: 411–416

    Article  Google Scholar 

  42. Weigel D, Meyerowitz EM (1993) Genetic hierarchy controlling flower development. In: Bernfield M (ed) Molecular basis of morphogenesis. Wiley-Liss, New York, pp 93–107

    Google Scholar 

  43. TheiBen G, Saedler H (1995) MADS-box genes in plant ontogeny and phylogeny: Haeckel’s “bionenergetic law” revisited. Curr Opin Genet Dev 5: 628–639

    Google Scholar 

  44. Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140: 345–356

    PubMed  CAS  Google Scholar 

  45. Ramachandran S, Hiratsuka K, Chua N-H (1994) Transcription factors in plant growth and development. Curr Opin Genet Dev 4: 642–646

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Hasebe, M. (1997). Molecular Phylogeny of Ginkgo biloba: Close Relationship Between Ginkgo biloba and Cycads. In: Hori, T., Ridge, R.W., Tulecke, W., Del Tredici, P., Trémouillaux-Guiller, J., Tobe, H. (eds) Ginkgo Biloba A Global Treasure. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68416-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68416-9_14

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68418-3

  • Online ISBN: 978-4-431-68416-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics