Molecular Phylogeny of Ginkgo biloba: Close Relationship Between Ginkgo biloba and Cycads

  • Mitsuyasu Hasebe


Morphological characters have been widely used to infer phylogenetic relationships of organisms. Difficulty of distinction between plesiomorphic and apomorphic characters because of homoplasy or excess morphological diversity has often necessitated subjective character evaluation by authors, which has resulted in controversies among differently inferred phylogenetic trees. Recent progress in molecular biology has made possible the use of information on genome organization and macromolecule sequences in systematics, which is useful to evaluate previously proposed phylogenetic studies based on morphological characters. Especially in distantly related taxa like gymnosperms in which character evaluation is puzzling, molecular phylogeny is expected to be a powerful tool for inference of phylogenetic relationships.


Chloroplast Genome Molecular Phylogeny Organelle Genome Seed Storage Protein Gene Slow Evolutionary Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Downie SR, Palmer JD (1992) use of chloroplast DNA rearrangements in reconstructing plant phylogeny. in: Soltis PS, Soltis DE, Doyle JJ (eds) molecular systematics of plants. Chapman and Hall, New York, pp 14–35CrossRefGoogle Scholar
  2. 2.
    Palmer JD, Stein DB (1986) conservation of chloroplast genome structure among vascular plants. Curr Genet 10: 823–834Google Scholar
  3. 3.
    Raubeson LA, Jansen RK (1992) chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255: 1697–1699Google Scholar
  4. 4.
    Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng B-Y, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) the complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. Embo J 5: 2043–2049Google Scholar
  5. 5.
    Strauss SH, Palmer JD, Howe GT, Doerksen AH (1988) chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proc Natl Acad Sci USA 85: 3898–3902Google Scholar
  6. 6.
    Tsudzuki J, Nakashima K, Tsudzuki T, Hiratsuka J, Shibata M, Wakasugi T, Sugiura M (1992) chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trnQ, trnK, psbA, trnI and trnH and the absence of rpsl6. Mol Gen Genet 232: 206–214Google Scholar
  7. 7.
    Suzuki J, Bauer CE (1992) light-independent chlorophyll biosynthesis: involvement of the chloroplast gene, chlL. Plant Cell 4: 929–940Google Scholar
  8. 8.
    Yamada K, Matsuda M, Fujita Y, Matsubara H, Sugai M (1992) A frxC homologue exists in the chloroplast DNAs from various pteridophytes and in gymnosperms. Plant Cell Physiol 33: 325–327Google Scholar
  9. 9.
    Burke DH, Raubeson LA, Alberti M, Hearst JE, Jordan ET, Kirch SA, Valinski AEC, Conant DS, Stein DB (1993) The chlL (frxC) gene: phylogenetic distribution in vascular plants and DNA sequence from Polystichum acrostichoides (Pteridophyta) and Synechococcus sp. 7002 (Cyanobacteria). Plant Syst Evol 187: 89–102CrossRefGoogle Scholar
  10. 10.
    Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, Krön KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedren M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Equiarte LE, Golenberg E, Learn GH Jr, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann MO Bot Gard 80: 528–580CrossRefGoogle Scholar
  11. 11.
    Manhart JR (1994) Phylogenetic analysis of green plant rbcL sequences. Mol Phylogenet Evol 3: 114–127PubMedCrossRefGoogle Scholar
  12. 12.
    Mishler BD, Lewis LA, Buchheim MA, Renzaglia KS, Garbary DJ, Delwiche CF, Zechman FW, Kantz TS, Chapman RL (1994) Phylogenetic relationships of the green algae and bryophytes. Ann MO Bot Gard 81: 451–483CrossRefGoogle Scholar
  13. 13.
    Hasebe M, Omori T, Nakazawa M, Sano T, Kato M, Iwatsuki K (1994) RbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proc Natl Acad Sci USA 91: 5730–5734Google Scholar
  14. 14.
    Hasebe M, Wolf PG, Pryer KM, Ueda K, Ito M, Sano R, Gastony GJ, Yokoyama J, Manhart JR, Murakami N, Crane EH, Haufler CH, Hauk WD (1995) Fern phylogeny based on rbcL nucleotide sequences. Amer Fern J 85: 134–181CrossRefGoogle Scholar
  15. 15.
    Wolfe KH, Gouy M, Yang Y-W, Shart PM, Li W-H (1989) Date of the monocotdicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86: 6201–6205PubMedCrossRefGoogle Scholar
  16. 16.
    Hasebe M, Kofuji R, Ito M, Kato M, Iwatsuki K, Ueda K (1992) Phylogeny of gymnosperms inferred from rbcL gene sequences. Bot Mag Tokyo 105: 673–679CrossRefGoogle Scholar
  17. 17.
    Goremykin V, Bobrova V, Pahnke J, Troitsky A, Antonov A, Martin W (1996) Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL do not support Gnetalean affinities of angiosperms. Mol Biol Evol 13: 383–396PubMedGoogle Scholar
  18. 18.
    Hiesel R, Combettes B, Brennicke A (1994) Evidence for RNA editing in mitochondria of all major groups of land plants except the Bryophyta. Proc Natl Acad Sci USA 91: 629–633PubMedCrossRefGoogle Scholar
  19. 19.
    Hiesel R, von Haeseler A, Brennicke A (1994) Plant mitochondrial nucleic acid sequences as a tool for phylogenetic analysis. Proc Natl Acad Sci USA 91: 634–638PubMedCrossRefGoogle Scholar
  20. 20.
    Chinn E, Silverthorne J (1993) Light-dependent chloroplast development and expression of a light-harvesting chlorophyll a/b-binding protein gene in the gymnosperm Ginkgo biloba. Plant Physiol (Rockv) 103: 727–732CrossRefGoogle Scholar
  21. 21.
    Chinn R, Silverthorne J, Hohtola A (1995) Light-regulated and organ-specific expression of types 1, 2, and 3 light-harvesting complex b mRNAs in Ginkgo biloba. Plant Physiol (Rockv) 107: 593–602CrossRefGoogle Scholar
  22. 22.
    Jansson S, Meyer-Gauen G, Cerff R, Martin W (1994) Nucleotide distribution in gymnosperm nuclear sequences suggests a model for GC-content change in land-plant nuclear genomes. J Mol Evol 39: 34–46PubMedCrossRefGoogle Scholar
  23. 23.
    Häger K-P, Braun H, Czihal A, Müller B, Bäumlein H (1995) Evolution of seed storage protein genes: legumin genes of Ginkgo biloba. J Mol Evol 41: 457–466PubMedCrossRefGoogle Scholar
  24. 24.
    Arahira M, Fukazawa C (1994) Ginkgo 11S seed storage protein family mRNA: unusual Asn-Asn linkage as post-translational cleavage site. Plant Mol Biol 25: 597–605PubMedCrossRefGoogle Scholar
  25. 25.
    Mathews S, Lavin M, Sharrock RA (1995) Evolution of the phytochrome gene family and its utility for phylogenetic analyses of angiosperms. Ann MO Bot Gard 82: 296–321CrossRefGoogle Scholar
  26. 26.
    Voytas DF, Cummings MP, Konieczny A, Ausubel FA, Rodermel SR (1992) Copialike retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89: 7124–7128PubMedCrossRefGoogle Scholar
  27. 27.
    Flavell A, Dunbar E, Anderson R, Pearch SR, Hartley R, Kumar A (1992) Tyl-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20: 3639–3644PubMedCrossRefGoogle Scholar
  28. 28.
    Hirochika H, Hirochika R (1993) Tyl-copia group retrotransposons as ubiquitous components of plant genomes. Jpn J Genet 68: 35–46PubMedCrossRefGoogle Scholar
  29. 29.
    Hamby RK, Zimmer EA (1992) Ribosomal RNA as a phylogenetic tool in plant systematics. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, New York, pp 50–91CrossRefGoogle Scholar
  30. 30.
    Hori H, Lim B-L, Osawa S (1985) Evolution of green plants as deduced from 5S rRNA sequences. Proc Natl Acad Sci USA 82: 820–823PubMedCrossRefGoogle Scholar
  31. 31.
    Nickrent DL, Soltis DE (1995) A comparison of angiosperm phylogenies from nuclear 18S rDNA and rbcL sequences. Ann MO Bot Gard 82: 208–234CrossRefGoogle Scholar
  32. 32.
    Chaw S-M, Long H, Wang B-S, Zharkikh A, Li W-H (1993) The phylogenetic position of Taxaceae based on 185 rRNA sequences. J Mol Evol 37: 624–630PubMedCrossRefGoogle Scholar
  33. 33.
    Chaw S-M, Sung H-M, Long H, Zharkikh A, Li W-H (1995) The phylogenetic positions of the conifer genera Amentotaxus, Phylloclasdus and Nageia inferred from 185 rRNA sequences. J Mol Evol 41: 224–230PubMedCrossRefGoogle Scholar
  34. 34.
    Doyle JA, Donoghue MJ, Zimmer EA (1994) Integration of morphological and ribosomal RNA data on the origin of angiosperms. Ann MO Bot Gard 81: 419–450CrossRefGoogle Scholar
  35. 35.
    Troitsky AV, Melekhovets YF, Rakhimova GM, Bobrova VK, Valiejo-Roman KM, Antonov AS (1991) Angiosperm origin and early stages of seed plant evolution deduced from rRNA sequence comparisons. J Mol Evol 32: 253–261PubMedCrossRefGoogle Scholar
  36. 36.
    Grane PR (1985) Phylogenetic analysis of seed plants and the origin of angiosperms. Ann MO Bot Gard 72: 716–793CrossRefGoogle Scholar
  37. 37.
    Doyle JA, Donoghue MJ (1986) Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot Rev 52: 321–431CrossRefGoogle Scholar
  38. 38.
    Laconte H, Stevenson DW (1990) Cladistics of the Spermatophyta. Brittonia 42: 197–211CrossRefGoogle Scholar
  39. 39.
    Nixon KC, Crepet WL, Stevenson DW, Friis EM (1994) A réévaluation of seed plant phylogeny. Ann MO Bot Gard 81: 484–533CrossRefGoogle Scholar
  40. 40.
    Rothwell GW, Serbet R (1994) Lignophyte phylogeny and the evolution of spermatophytes: a numerical cladistic analysis. Syst Bot 19: 443–482CrossRefGoogle Scholar
  41. 41.
    Rothwell GW (1994) Phylogenetic relationships among ferns and gymnosperms; an overview. J Plant Res 107: 411–416CrossRefGoogle Scholar
  42. 42.
    Weigel D, Meyerowitz EM (1993) Genetic hierarchy controlling flower development. In: Bernfield M (ed) Molecular basis of morphogenesis. Wiley-Liss, New York, pp 93–107Google Scholar
  43. 43.
    TheiBen G, Saedler H (1995) MADS-box genes in plant ontogeny and phylogeny: Haeckel’s “bionenergetic law” revisited. Curr Opin Genet Dev 5: 628–639Google Scholar
  44. 44.
    Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140: 345–356PubMedGoogle Scholar
  45. 45.
    Ramachandran S, Hiratsuka K, Chua N-H (1994) Transcription factors in plant growth and development. Curr Opin Genet Dev 4: 642–646PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1997

Authors and Affiliations

  • Mitsuyasu Hasebe
    • 1
  1. 1.Botanical Gardens, Faculty of ScienceUniversity of TokyoBunkyo-ku, Tokyo 112Japan

Personalised recommendations