The Wick calculus of pseudo-differential operators and energy estimates

  • Nicolas Lerner


Acknowledgement. This is my pleasure to congratulate Professor Komatsu on his sixtieth birthday and to thank him for his invitation and the very warm welcome he gave us during our stay in Japan. I wish also to express my thanks to the other organizers of this meeting, Professors Bony and Tose.


Energy Estimate Local Solvability Microlocal Analysis Sixtieth Birthday Weyl Quantization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BF]
    R. Beals, C. Fefferman, On local solvability of linear partial differential equations, Ann. of Math. 97 (1973), 482–498.MathSciNetMATHCrossRefGoogle Scholar
  2. [Be]
    F.A. Berezin, Quantization, Math. USSR, Izvest. 8 (1974), 1109–1165.MATHCrossRefGoogle Scholar
  3. [Bo]
    J.M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann.Sci.Ec.N. Sup. 14 (1981), 209–256.MathSciNetMATHGoogle Scholar
  4. [BL]
    J.M. Bony, N. Lerner, Quantification asymptotique et microlocalisations d’ordre supérieur, Ann.Sci.Ec.N. Sup. 4, 22 (1989), 377–433.MathSciNetGoogle Scholar
  5. [CF]
    A. Cordoba, C. Fefferman, Wave packets and Fourier integral operators, Comm. PDE 3(11) (1978), 979–1005.MathSciNetMATHCrossRefGoogle Scholar
  6. [FP]
    C. Fefferman, D.H. Phong, On positivity of pseudo-differential operators, Proc.NatAc.Sc. (1978), 4673–4674.Google Scholar
  7. [Fo]
    G.B. Folland, Harmonic analysis in phase space, Annals of Math. Studies 122, Princeton University press, 1989.Google Scholar
  8. [H1]
    L. Hörmander, The analysis of linear partial differential operators, Springer-Verlag, 1985.Google Scholar
  9. [H2]
    L. Hörmander, On the solvability of pseudodifferential equations, 1995, (preprint).Google Scholar
  10. [La]
    B. Lascar, Condition nécessaire et suffisante d’ellipticité en dimension infinie, Comm. PDE 2(1) (1977), 31–67.MathSciNetMATHCrossRefGoogle Scholar
  11. [LI]
    N. Lerner, Sufficiency of condition (ψ) for local solvability in two dimensions, Ann. of Math. 128 (1988), 243–258.MathSciNetMATHCrossRefGoogle Scholar
  12. [L2]
    N. Lerner, An iff solvability condition for the oblique derivative problem, exposé 18, 1990–91, Séminaire EDP, Ecole Polytechnique.Google Scholar
  13. [L3]
    N. Lerner,, Nonsolvability in L 2 for a first order operator satisfying condition (tp), Ann. of Math. 139 (1994), 363–393.MathSciNetMATHCrossRefGoogle Scholar
  14. [L4]
    N. Lerner,, Coherent states and evolution equations, preprint 95-34,Université de Rennes (1995).Google Scholar
  15. [NT]
    L. Nirenberg, F. Treves, On local solvability of linear partial differential equations, Comm. Pure Appl. Math. 23 (1970), 1–38, 459-509; 24 (1971), 279-288.MathSciNetMATHCrossRefGoogle Scholar
  16. [Sh]
    M. Shubin, Pseudo-differential operators and spectral theory, Springer-Verlag, 1985.Google Scholar
  17. [Un]
    A. Unterberger, Oscillateur harmonique et opérateurs pseudo-différentiels, Ann. Inst. Fourier 29 (1979), 201–221.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1997

Authors and Affiliations

  • Nicolas Lerner
    • 1
  1. 1.Irmar, Campus de BeaulieuUniversité de Rennes 1Rennes CedexFrance

Personalised recommendations