Kashiwara’s microlocal analysis of the Bergman kernel for domains with corner

  • Motoo Uchida


We shall show that an analogy of Kashiwara’s microlocal analysis works well and will give good information for Bergman kernels of pseudoconvex domains with corner. The strict pseudoconvexity plays an essential role in the case of dimension ≥ 3.


Complex Manifold Convex Domain Pseudoconvex Domain Bergman Kernel Principal Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B1]
    Boutet de Monvel, L., Complément sur les noyaux de Bergman, Séminaire E.D.P. 1985–1986, exposé 20, Ecole Polytechnique.Google Scholar
  2. [B2]
    Boutet de Monvel, L., Singularity of the Bergman kernel, Complex Geometry (G. Komatsu and Y. Sakane, eds.), Lecture Notes in Pure and Applied Math. 143, Dekker, 1992, pp. 13–29.Google Scholar
  3. [BS]
    Boutet de Monvel, L. and Sjöstrand, J., Sur les singularités des noyaux de Bergman et de Szegö, Astérisque, Soc. math. France, 34-35 (1976), 123–164.Google Scholar
  4. [K1]
    Kashiwara, M., Micro-local calculus of simple microfunctions, Complex Analysis and Algebraic Geometry (W. L. Baily and T. Shioda, eds.), Iwanami-Shoten, Tokyo, 1977, pp. 369–374.CrossRefGoogle Scholar
  5. [K2]
    Kashiwara, M., Analyse microlocale du noyau de Bergman, Séminaire Goulaouic-Schwartz 1976–77, exposé 8, Ecole Polytechnique.Google Scholar
  6. [SKK]
    Sato, M., Kawai, T., and Kashiwara, M., Microfunctions and pseudo-differential equations, Lecture Notes in Math. 287, Springer-Verlag, 1973, pp. 265–529.MathSciNetGoogle Scholar
  7. [SKKO]
    Sato, M., Kashiwara, M., Kimura, T., and Oshima, T., Micro-local analysis of prehomogeneous vector spaces, Invent. Math. 62 (1980), 117–179.MathSciNetMATHCrossRefGoogle Scholar
  8. [Y]
    Yamazaki, S., Singularity of the Bergman kernel for a two dimensional pseudoconvex tube domain with corners, J. Math. Sci., Univ. Tokyo 2 (1995), 637–655.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1997

Authors and Affiliations

  • Motoo Uchida
    • 1
  1. 1.Department of Mathematics, Graduate School of ScienceOsaka UniversityToyonaka, Osaka 560Japan

Personalised recommendations