Bloch function in an external electric field and Berry-Buslaev phase

  • Shinichi Tajima


The study of the behavior of Bloch electrons in an uniform external electric field is as old as the quantum theory of solids. Analysis of the motion of electrons in such external fields turned out, perhaps rather surprisingly, to be quit complicated and even at present the subject is very much alive. The source of the difficulties of this problem is that no matter how small the electron field strength is, for sufficiently large distances, the perturbed potential becomes arbitraly strong. In fact the perturbation created by electric field is singular from the spectral theoretic point of view. In consequence, strightforward application of the naive perturbation method is dangerous and rigorous results are hard to come by. For a better understanding of the difficulties, let us remined here the case of the Stark effect in atomic physics : although the Stark effects were the first example of quantum mechanical perturbation theory, it needed half a centry to develop a satisfactory mathematical description. Actually the existence of the Stark-Wannier resonance states, a quantum mechanical concept proposed by Wannier in solid state physics about 40 years ago, was strongly debated until recently.


External Electric Field Geometric Phase Schrodinger Equation Stark Effect Bloch Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. N. Adams, II, Motion of electron in a perturbed periodic potential, Phys. Rev. 85 (1952), 41–50.MATHCrossRefGoogle Scholar
  2. 2.
    J. Agler and R. Froese, Existence of Stark ladder resonances, Comm. Math. Phys. 100 (1985), 161–171.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    N. I. Akhiezer, On the spectral theory of Lamé’s equation, Istor. Mat. Issled. 23 (1978), 77–86 (in Russian).MathSciNetMATHGoogle Scholar
  4. 4.
    W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders Campany, 1976.Google Scholar
  5. 5.
    J. E. Avron, On the lifetime of Wannier ladder states, Annals of Phys. 143 (1982), 33–53.CrossRefGoogle Scholar
  6. 6.
    G. Bastard, J. A. Brum and R. Ferreira, Electronic states in semiconductor heterostructures, Solid State Phys. 44 (1991), 229–415.CrossRefGoogle Scholar
  7. 7.
    F. Bentosela, Bloch electrons in constant electric field, Comm. Math. Phys. 68 (1979), 173–182.MathSciNetCrossRefGoogle Scholar
  8. 8.
    F. Bentosela, V. Grecchi and F. Zironi, Approximate ladder of resonances in a semi-infinite crystal, J. Phys. C. Solid State Phys. 15 (1982), 7119–7131.CrossRefGoogle Scholar
  9. 9.
    F. Bentosela and V. Grecchi, Stark-Wannier ladders, Comm. Math. Phys. 142 (1991), 169–192.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    M. V. Berry, Quantum phase factors accompanying adiabatic changes, Proc. R. Soc. London A 392 (1984), 45–57.MATHCrossRefGoogle Scholar
  11. 11.
    V. S. Buslaev, Adiabatic perturbation of a periodic potential, Theoret. and Math. Phys. 58 (1984), 153–159.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    V. S. Buslaev, Semiclassical approximation for equations with periodic coefficients, Russian Math. Survey 42 (1987), 97–125.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    V. S. Buslaev and L. A. Dmitrieva, Geometric aspects of the Bloch electrons theory in external field, Topological Phases in Quantum Theory (B. Markovski and S. I. Vinitsky, eds.), World Scientific, 1989, pp. 218–250.Google Scholar
  14. 14.
    V. S. Buslaev and L. A. Dmitrieva, A Bloch electron in an external field, Leninglad Math. 1 (1990), 287–320.MathSciNetMATHGoogle Scholar
  15. 15.
    J. M. Combes and P. D. Hislop, Stark ladder resonances for small electric fields, Comm. Math. Phys. 140 (1991), 291–320.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    B. A. Dubrovin, V. B. Matveev and S. P. Novikov, Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian varieties, Russian Math. Surveys 31 (1976), 59–146.MathSciNetMATHGoogle Scholar
  17. 17.
    L. Esaki and R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM J. Res. Develop. 14 (1970), 61–65.CrossRefGoogle Scholar
  18. 18.
    L. Fritsche, Representation of a lattice electron in a uniform electric field, Phys. Stat. Sol 13 (1966), 487–497.CrossRefGoogle Scholar
  19. 19.
    J. C. Guillot, J. Ralston and E. Trubowitz, Semi-classical asymptotics in solid state physics, Comm. Math. Phys. 116 (1988), 401–415.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    I. W. Herbst and J. S. Howland, The Stark ladder and other one-dimensional external field problems, Comm. Math. Phys. 80 (1981), 23–42.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    H. Hochstadt, On the determination of a Hill’s equation from its spectrum, Arch. Rat. Mech. Anal. 19 (1965), 353–362.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    W. V. Houston, Acceleration of electrons in a crystal lattice, Phys. Review 57 (1940), 184–186.MathSciNetCrossRefGoogle Scholar
  23. 23.
    W. Hunziker, Schrödinger operators with electric or magnetic fields, Mathematical Problems in Theoretical Physics (K. Osterwalder, ed.), Lecture Notes in Physics, 116 (1979), pp. 25–44.Google Scholar
  24. 24.
    A. R. Its and V. B. Matveev, On a class of solutions of the KdV equation, Problems of mathematical physics 8 Izdat Leningrad Univ. (1976), 70–92 (in Russian).MathSciNetGoogle Scholar
  25. 25.
    W. Kohn, Analytic properties of Bloch waves and Wannier functions, Phys. Review 115 (1959), 809–821.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    W. Magnus and S. Winkler, Hill’s Equation, 1979, Dover, 1979.Google Scholar
  27. 27.
    F. Maruyama, Sur la phase géometrique de l’équation de Lamé perturbée, (preprint).Google Scholar
  28. 28.
    E. E. Mendez, F. Agulló-Rueda and J. M. Hong, Stark localization in GaAs-GaAlAs superlattices under an electric field, Phys. Rev. Lett. 60 (1988), 2426–2429.CrossRefGoogle Scholar
  29. 29.
    G. Nenciu, Dynamics of band electrons in electric and magnetic fields, Rev. Mod. Phys. 63 (1991), 91–127.CrossRefGoogle Scholar
  30. 30.
    S. Tajima, Geometric phase in a perturbed Lamé equation, First Korean-Japanese Colloquium on Finite or Infinite Dimensional Complex Analysis (J. Kajiwara, H. Kazama and K. H. Shon, eds.), 1993, pp. 55–61.Google Scholar
  31. 31.
    E. C. Titchmarsh, Some theorems on perturbation theory, III, IV, V, Proc. Roy. Soc. A207 (1951), 321–328; A210 (1951), 30-47; J. Analyse Math. 4 (1954/56), 187-208.MathSciNetGoogle Scholar
  32. 32.
    P. Voisin, J. Bleuse, C. Bouch, S. Gaillard, C. Alibert and A. Regreny, Observation of the Wannier-Stark quantization in a semiconductor superlattice, Phys. Rev. Lett. 61 (1988), 1639–1642.CrossRefGoogle Scholar
  33. 33.
    G. H. Wannier, Wave functions and effective Hamiltonian for Bloch electrons in an electric field, Phys. Rev. 117 (1960), 432–439.MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    J. Zak, Localized states and effective Hamiltonians in perturbed crystals, Comm. in Physics 1 (1976), 73–79.Google Scholar
  35. 35.
    C. Zener, A theory of the electrical breakdown of solid dielectrics, Proc. Roy. Soc. London, ser A 145 (1934), 523–529.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1997

Authors and Affiliations

  • Shinichi Tajima
    • 1
  1. 1.Department of Information Engineering, Faculty of EngineeringNiigata UniversityNiigataJapan

Personalised recommendations