Symmetry-Canon: Music and Mathematics, Painting and Graphicization “Perpetuum Mobile”

  • Gian Franco Arlandi
Conference paper


To the research of the symmetrical canon, the dynamic form constantly is the structure of the musical-mathematical-pictorial-graphicization variably. The series of symmetrical canon: in Music and Mathematics, from counterpoint to diagonalisation, from topology to Perpetuum mobile, constitutes creatively the artistical and scientifical symmetry.


Dynamic Form Opposite Movement Canonic Structure History Project Direct Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Arlandi G.F., 1988, Il paradigma tetragonos nel Progetto di Semiotica delia Cultura evoluzionistica dalla Cosmogenesi alla Post-Mediogenesi, Evolution of Culture: 9-93, (ed.) W.A. Koch, Bochum: Brockmeyer, 1989Google Scholar
  2. (2).
    Arlandi G.F. et I. Zelenka, 1974–75, 9 jeux picturaux et musicaux des points et des lignes, Como-Genève, Perpetuum mobile, Graphicisation cm.120×600, Computermusic t.30′, Como: Autunno Musicale, Laboratorio suono-immagine, Villa Olmo, 1980Google Scholar
  3. (3).
    Bach J.S., 1749-50, Die Kunst der Fuge, London-Mainz-New Jork-Tokyo-Zürich: EulemburgGoogle Scholar
  4. (4).
    Boole, G., 1854, Diagonalisation of the ordered pairs, An Inve stigation of the Law of Thought, London, (ed.) Jourdain P.E.B. New York, 1951, (ed.) Mendelson E., New Joyk: McGraw-Hill (Schaum): 2.18, 1970Google Scholar
  5. (5).
    Calderara A., 1968, Misura di luce, Serigrafie di Calderara e poesie di Murillo Mendes, Roma: MagmaGoogle Scholar
  6. (6).
    Cantor G., 1874) Diagonalisation in equipotentiality, Mathematik 1, (ed.) Steiner H.G., Frankfurt-Hamburg: Fischer Bücherei KG, 1961Google Scholar
  7. (7).
    Clementi M., 1788, Gradus ad Parnassum, London-Mainz-New York-Tokyo-Zürich: EulenburgGoogle Scholar
  8. (8).
    Dallapiccola L., 1952, Quaderno musicale di Annalibera for pi ano transcribed for orchestra: Variations, London-Mainz-New York-Tokyo-Zürich: Eulenburg, 1954Google Scholar
  9. (9).
    Escher M.C., 1965, Möbius Strips, xylography, Amsterdam: Beei drecht, 1982Google Scholar
  10. (10).
    Hjelmslev L., 1943, Prolegomena to a Theory of language, (ed.) Whitfield F.J., University of Wisconsin, 1961Google Scholar
  11. (11).
    Jakobson R. et Pomorska K., 1980, Dialogues, Paris: FlammarionGoogle Scholar
  12. (12).
    Koch W.A., 1986, Evolutionäre Kultursemiotik, Bochum: BrockmeyerGoogle Scholar
  13. (13.
    Möbius A.F., 1869, Endless Ribbon, Topology, (ed.) Patterson E.M. University Mathematical Texts, St.Andrews, Oliver and Boyd LTD, 1963Google Scholar
  14. (14).
    Saussure F. de, 1915, Cours de linguistique générale,(ed.) Mauro T. de, Paris: Payot, 1983Google Scholar
  15. (15).
    Walter J., 1542, Kanontextbuch, London-Mainz-New York-Tokyo-Zürich: EulenburgGoogle Scholar
  16. (l6).
    Zaffiri E., 1968, Progetto Q/36 quadrato, Due Scuole di musica elettronica in Italia, 29-50, Milano: SilvaGoogle Scholar
  17. (17).
    Zelenka I., 1975, 9 jeux picturaux et musicaux des points et des lignes avec Arlandi G.F., Perpetuum mobile, Como: XIV° Au tunno Musicale, Laboratorio suono-immagine, Villa Olmo, 1980Google Scholar

Copyright information

© Springer-Verlag Tokyo 1996

Authors and Affiliations

  • Gian Franco Arlandi
    • 1
  1. 1.Centro Comasco di SemioticaResidence SonengaMenaggio, Lake ComoItaly

Personalised recommendations