Advertisement

Theorems on the Regularity and Singularity of Minimal Surfaces and Harmonic Maps

  • Leon Simon

Abstract

These lectures are meant as an introduction to the analytic aspects of the study of regularity properties and singularities of minimal surfaces and harmonic maps.

Keywords

Minimal Surface Approximation Property Compactness Theorem Regularity Theorem Lipschitz Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1]
    F. Almgren, Q-valued functions minimizing Dirichlet’s integral and the regularity of of area minimizing rectifiable currents up to codimension two, Preprint.Google Scholar
  2. [A2]
    F. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Annals of Math. 87 (1968), 321–391.MathSciNetMATHCrossRefGoogle Scholar
  3. [AW]
    W. Allard, On the first variation of a varifold, Annals of Math. 95 (1972), 417–491.MathSciNetMATHCrossRefGoogle Scholar
  4. [B]
    F. Bethuel, On the singular set of stationary harmonic maps, PreprintGoogle Scholar
  5. [BCL]
    H. Brezis, J.-M. Coron, & E. Lieb, Harmonic maps with defects, Comm. Math. Physics 107 (1986), 82–100.MathSciNetCrossRefGoogle Scholar
  6. [DeG]
    E. De Giorgi, Frontiere orientate di misura minima, Sem. Mat. Scuola Norm. Sup. Pisa (1961), 1-56.Google Scholar
  7. [E]
    C. L. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rat. Mech. Anal., 116 (1991), 101–163.MATHCrossRefGoogle Scholar
  8. [GG]
    M. Giaquinta & E. Giusti, The singular set of the minima of certain quadratic functionals, Ann. Scuola Norm. Sup. Pisa 11 (1984), 45–55.MathSciNetMATHGoogle Scholar
  9. [GT]
    D. Gilbarg & N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983.Google Scholar
  10. [GW]
    R. Gulliver & B. White, The rate of convergence of a harmonic map at a singular point, Math. Annalen 283 (1989), 216–228.MathSciNetCrossRefGoogle Scholar
  11. [HF]
    F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété Riemanninenne, C.R. Acad. Sci. Paris 312 (1991), 591–596.MATHGoogle Scholar
  12. [HL1]
    R. Hardt & F.-H. Lin, The singular set of an energy minimizing harmonic map from B 4 to S 2, Preprint 1990.Google Scholar
  13. [HL2]
    R. Hardt & F.-H. Lin, Mappings minimizing the L p norm of the gradient, Comm. Pure & Appl. Math. 40 (1987), 555–588.MathSciNetMATHCrossRefGoogle Scholar
  14. [JJ]
    J. Jost, Harmonic maps between Riemannian manifolds, Proceedings of the Centre for Mathematical Analysis, Australian National University, 3 (1984).Google Scholar
  15. [L]
    S. Lojasiewicz, Ensembles semi-analytiques, IHES notes (1965).Google Scholar
  16. [Lu1]
    S. Luckhaus, Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold, Indiana Univ. Math. J. 37 (1988), 349–367.MathSciNetMATHCrossRefGoogle Scholar
  17. [Lu2]
    S. Luckhaus, Convergence of Minimizers for the p-Dirichlet Integral, Preprint, 1991.Google Scholar
  18. [MCB]
    C. B. Morrey, Multiple integrals in the calculus of variations, Springer Verlag, 1966.Google Scholar
  19. [R]
    R. E. Reifenberg, Solution of the Plateau problem for m-dimensional surfaces of varying topological type, Acta. Math. 104 (1960), 1–92.MathSciNetMATHCrossRefGoogle Scholar
  20. [Riv]
    E. Riviere, Everywhere discontinuous maps into the sphere, Preprint.Google Scholar
  21. [SS]
    R. Schoen & L. Simon, Regularity of stable minimal hyper surfaces, Comm. Pure Appl. Math. 34 (1981), 741–797.MathSciNetMATHCrossRefGoogle Scholar
  22. [SU]
    R. Schoen & K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom. 17 (1982), 307–336.MathSciNetMATHGoogle Scholar
  23. [SL1]
    L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, 3 (1983).Google Scholar
  24. [SL2]
    L. Simon, Cylindrical tangent cones and the singular set of minimal submanifolds, J. Diff. Geom. 38 (1993), 585–652.MATHGoogle Scholar
  25. [SL3]
    L. Simon, On the singularities of harmonic maps, In preparation.Google Scholar
  26. [SL4]
    L. Simon, Singularities of Geometric Varational Problems, Summer School Lectures delivered at RGI, Park City, Utah, 1992, To appear in AMS Park City Geometry Series.Google Scholar
  27. [SL5]
    L. Simon, Proof of the Basic Regularity Theorem for Harmonic Maps, Summer School Lectures delivered at RGI, Park City, Utah, 1992, To appear in AMS Park City Geometry Series.Google Scholar
  28. [SL6]
    L. Simon, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Annals of Math. 118 (1983), 525–572.MATHCrossRefGoogle Scholar
  29. [SL7]
    L. Simon, Lectures on regularity and singularity of energy minimizing maps: Monograph to appear in ETH Lectures in Mathematics series, BirkhäuserGoogle Scholar
  30. [SL8]
    L. Simon, Rectifiability of the singular set of energy minimizing maps, To appear in Calculus of Variations and PDE.Google Scholar
  31. [SL9]
    L. Simon, Rectifiability of the singular set of multiplicity 1 minimal surfaces, To appear in Surveys of Differential Geometry.Google Scholar
  32. [WB]
    B. White, Non-unique tangent maps at isolated singularities of harmonic maps, Bull. A.M.S. 26 (1992), 125–129.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1996

Authors and Affiliations

  • Leon Simon
    • 1
  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations