Turbulence, Disturbed Flow, and Vascular Endothelium

  • C. F. DeweyJr.
  • P. F. Davies
  • M. A. GimbroneJr.
Conference paper


In a series of recent experiments, we have measured striking differences between cultured endothelial cells subjected to laminar flow and cells subjected to turbulent flow. In steady laminar flow, as well as laminar flow oscillated at frequencies up to 1 Hz, there is no evidence of increased cell turnover compared to static controls even though the cells undergo significant realignment in a period of 24 hours. With turbulent flow that contains a broad spectrum of higher-frequency small-scale oscillations, the most visible endothelial cell response is increased mitosis. This cell division occurs at time-average shear stresses as much as a factor of 5 smaller than the steady laminar shear stress required to cause alignment. One possible mechanism for this behavior is discussed.


Wall Shear Stress Intercellular Junction Laminar Shear Stress Steady Laminar Flow Differential Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Beere, P.A., Glagov, S. and Zarins, C.K. [1984] Science, 226, 180–182.Google Scholar
  2. [2]
    Davies, P.F. [1986] Laboratory Invest., 55, 5–24.Google Scholar
  3. [3]
    Davies, P.F., Reidy, M.A., Goode, T.B., and Bowyer, D.E. [1976] Atherosclerosis, 25, 125–130.Google Scholar
  4. [4]
    Davies, P.F., Dewey, C.F.Jr., Bussolari, S.R., Gordon, E.J., and Gimbrone, M.A.Jr. [1984] J. Clin. Invest, 73, 1121–1129.Google Scholar
  5. [5]
    Davies, P.F., Remuzzi, A., Gordon, E.J., Dewey, C.F.Jr., and Gimbrone, M.A.Jr. [1986] Proc. Natl. Acad. Sciences USA, 83, 2114–2117.Google Scholar
  6. [6]
    Dewey, CF., Jr. [1979] Ch. 2 of Dynamics of Arterial Flow [Eds. S. Wolf and N.T. Werthessen, Eds.], Plenum Press, N.Y., pp 55–103.Google Scholar
  7. [7]
    Dewey, C.F.Jr. [1984] J. Biomech. Eng., 106, 31–35.Google Scholar
  8. [8]
    Dewey, CF., Jr., Bussolari, S.R., Gimbrone, M.A., Jr. and Davies, P.F. [1981] J. Biomech. Eng., 103, 177–185.Google Scholar
  9. [9]
    Dewey, CF., Jr., Gimbrone, M.A., Jr., Bussolari, S.R., White, G.E. and Davies, P.F. [1983] in Fluid Dynamics as a Localizing Factor for Atherosclerosis, (Eds.G. Schettler et al.), Springer-Verlag, pp 182–187.Google Scholar
  10. [10]
    Einav, S., Hartenbaum, H., and Dewey, C.F.Jr. [1986] Bull. Am. Phys. Soc, 31,1693.Google Scholar
  11. [11]
    Friedman, M.H., Hutchins, G.M., Bargeron, C.B., Deters, O.J., and Mark, F.F. [1981] Atherosclerosis, 39, 425–436.Google Scholar
  12. [12]
    Friedman, M.H. and Deters, O.J. [1987] J. Biomech. Eng., 109, 25–26.Google Scholar
  13. [13]
    Fry, D.L. [1968] Circ. Res., 23, 165–197.Google Scholar
  14. [14]
    Fry, D.L. [1976] in Cerebrovascular Diseases (Ed. P. Scheinberg), Raven Press, pp. 77–95.Google Scholar
  15. [15]
    Gimbrone, M.A., Jr. [1986] in Atherosclerosis VII, Proceedings of the 7th International Symposium on Atherosclerosis, [Eds. Fidge, N.F. and Nestel, P.J.] Excerpta Medica, 367–36Google Scholar
  16. [16]
    Ku, D.N., Giddens, D.P., Zarins, CK., and Glagov, S. [1985] Arteriosclerosis, 5, 293–302.Google Scholar
  17. [17]
    Langiller B.L., Reidy, M.A., and Kline, R.L. [1986] Arteriosclerosis, 6, 146–154.Google Scholar
  18. [18]
    Larson, D.M. and Sheridan, J.D. [1982] J. Cell Biol., 92,183–191.Google Scholar
  19. [19]
    Levesque MJ. and Nerem, R.M. [1985] J. Biomech. Eng., 107, 341–347.Google Scholar
  20. [20]
    Lowenstein, W.R. [1987] Cell, 48, 725–726.Google Scholar
  21. [21]
    Naumann, A. and Schmid-Schönbein, H. [1983] in Fluid Dynamics as a Localizing Factor for Atherosclerosis, (Eds. G. Schettler et al.), Springer-Verlag, pp 9–25.Google Scholar
  22. [22]
    Nerem, R.M., and Levesque, MJ. [1983] in Fluid Dynamics as a Localizing Factor for Atherosclerosis, (Eds. G. Schettler et al.), Springer-Verlag, pp 26–37.Google Scholar
  23. [23]
    Pitts, J.D. [1978] in Intercellular Junctions and Synapses (J.D. Feldman and N.B. Gilula, Eds.), Chapman and Hall, London, p. 63.Google Scholar
  24. [24]
    Remuzzi, A., Dewey, C.F.Jr., Davies, P.F., and Gimbrone, M.A.Jr. [1984] Biorheol., 21, 617–630.Google Scholar
  25. [25]
    Schwartz, S.M., Stemennan, M.B., and Benditt, E.P. [1975] Am. Journal Pathology, 81, 15–42Google Scholar
  26. [26]
    Sdougos, H.P., Bussolari, S.R., and Dewey, C.F.Jr. [1984] J. of Fluid Mech., 138, 379–404.Google Scholar
  27. [27]
    Spagnoli, L.G., Pietra, G.G., Villaschi, S., and Johns, L.W. [1982] Laboratory Invest., 46 139–148.Google Scholar
  28. [28]
    Tarbell, J.M., Chang, L.J. and Hollis, T.M. [1982] J. Biomech. Engng, 104, 243–245.Google Scholar
  29. [29]
    White, G.E., Gimbrone, M.A.Jr., Fujiwara, K. [1983] J. Cell Biol., 97, 416–424.Google Scholar

Copyright information

© Springer-Verlag Tokyo 1988

Authors and Affiliations

  • C. F. DeweyJr.
    • 1
  • P. F. Davies
    • 2
  • M. A. GimbroneJr.
    • 2
  1. 1.Fluid Mechanics LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Vascular Research DivisionBrigham and Women’s Hospital, Harvard University Medical SchoolBostonUSA

Personalised recommendations