Skip to main content

Biotechnology for Phytomonitoring

  • Chapter
  • 643 Accesses

Abstract

The various forms of foliar damage caused by air pollutants to plants, including easily visible chlorotic and necrotic symptoms, have been successfully used to detect and monitor these pollutants in the natural environment (see the chapters by I. Nouchi, this volume). The use of plants for such monitoring (phytomonitoring) has both advantages and disadvantages over methods based on physicochemical analyses (see the chapters by I. Nouchi and by M. Burchett et al.). Plant materials suitable for such a purpose must demonstrate high sensitivity, specificity, and reproducibility of the symptoms in addition to allowing easy detection and measurement of the degree of damage. For example, sensitive strains of plants such as tobacco, morning glory, and clover have been used for phytomonitoring (see the chapter by I. Nouchi). Excellent strains, such as ozone-sensitive Bel-W3 tobacco, have also been developed by traditional breeding and selection (Heggestad 1991).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ABRC (1995) Seed and DNA stock list. Arabidopsis Biological Resource Center, The Ohio State University, Columbus, Ohio, USA

    Google Scholar 

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107: 1049–1054

    PubMed  CAS  Google Scholar 

  • Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250: 959–966

    Article  PubMed  CAS  Google Scholar 

  • Blume B, Grierson D (1997) Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. Plant J 12: 731–746

    Article  PubMed  CAS  Google Scholar 

  • Bourque JE (1995) Antisense strategies for genetic manipulations in plants. Plant Sci 105: 125–149

    Article  CAS  Google Scholar 

  • Chang SS, Park SK, Kim BC, Kang BJ, Kim DU, Nam HG (1994) Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta. Plant J 5: 551–558

    Article  CAS  Google Scholar 

  • Christou P (1997) Rice transformation: bombardment. Plant Mol Biol 35: 197–203

    Article  PubMed  CAS  Google Scholar 

  • Conconi A, Smerdon MJ, Howe GA, Ryan, CA (1996) The octadecanoid signaling pathway in plants mediates a response to ultraviolet radiation. Nature 383: 826–829

    Article  PubMed  CAS  Google Scholar 

  • Conklin PL, Saracco SA, Norris SR, Last RL (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154: 847–856

    PubMed  CAS  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93: 9970–9974

    Article  PubMed  CAS  Google Scholar 

  • Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1: 71–82

    Article  CAS  Google Scholar 

  • Feldmann KA, Marks MD (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 208: 1–9

    Article  CAS  Google Scholar 

  • Ficker M, Wemmer T, Thompson RD (1997) A promoter directing high level expression in pistils of transgenic plants. Plant Mol Biol 35: 425–431

    Article  PubMed  CAS  Google Scholar 

  • Heggestad HE (1991) Origin of Bel-W3, Bel-C and Bel-B tobacco varieties and their use as indicators of ozone. Environ Pollut 74: 264–291

    Article  PubMed  CAS  Google Scholar 

  • Hooykaas PJJ (1989) Transformation of plant cells via Agrobacterium. Plant Mol Biol 13: 327–336

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227: 1229–1231

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907

    PubMed  CAS  Google Scholar 

  • Kangasjärvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defence systems induced by ozone. Plant Cell Environ 17: 783–794

    Article  Google Scholar 

  • Kasana MS, Lea PJ (1994) Growth responses of mutants of spring barley to fumigation with SO2 and NO2 in combination. New Phytol 126: 629–636

    Article  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol 17: 287–291

    Article  CAS  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 70–73

    Article  CAS  Google Scholar 

  • Klessig DF, Malamy J (1994) The salicylic acid signal in plants. Plant Mol Biol 26: 1439–1458

    Article  PubMed  CAS  Google Scholar 

  • Kurata HI, Takemura T, Furusaki S, Kado CI (1998) Light-controlled expression of a foreign gene using the chalcone synthase promoter in tobacco BY-2 cells. J Ferment Bioeng 86: 317–323

    Article  CAS  Google Scholar 

  • Langebartels C, Kerner K, Leonardi S, Schraudner M, Trost M, Heller W (1991) Biochemical plant responses to ozone. I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol 95: 882–889

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ, Wolfenden J, Wellburn AR (1994) Influences of air pollutants upon nitrogen metabolism. In: Alscher RG, Wellburn, AR (eds) Plant responses to the gaseous environment: molecular metabolic and physiological aspects. Elsevier, Barking, Essex, pp 279–300

    Google Scholar 

  • Lightner J, Caspar T (1998) Seed mutagenesis of Arabidopsis. In: Martínez-Zapater JM, Salinas J (eds) Arabidopsis protocols. Humana Press, Totowa, NJ, pp 91–104

    Chapter  Google Scholar 

  • Lindsey K (1998) Transgenic plant research. Harwood, Amsterdam

    Google Scholar 

  • Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL (1996) Expression monitoring by hibridization to high-density oligonucleotide arrays. Nat Biotechnol 14: 1675–1680

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Zapater JM, Salinas J (1998) Arabidopsis protocols. Methods in molecular biology, vol 82, Humana Press, Totowa, NJ, pp 277–351

    Google Scholar 

  • Örvar B, McPherson J, Ellis BE (1997) Pre-activating wounding response in tobacco prior to high-level ozone exposure prevents necrotic injury. Plant J 11: 203–212

    Article  PubMed  Google Scholar 

  • Overmyer K, Tuominen H, Kettunen R et al (2000) Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12: 1849–1862

    Article  PubMed  CAS  Google Scholar 

  • Philip R, Damowski DW, Sundararaman V, Cho MJ, Vodkin LO (1998) Localization of β-glucuronidase in protein bodies of transgenic tobacco seed by fusion to an amino terminal sequence of the soybean lectin gene. Plant Sci 137: 191–204

    Article  CAS  Google Scholar 

  • Pickardt T, Ziervogel B, Schade V, Ohl L, Bäumlein H, Meixner M (1998) Developmental- regulation and tissue-specific expression of two different seed promoter GUS-fusions in transgenic lines of Vicia narbonensis. J Plant Physiol 152: 621–629

    Article  CAS  Google Scholar 

  • Sharma YK, León J, Raskin I, Davis KR (1906) Ozone-induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc Natl Acad Sci USA 93: 5099–5104

    Google Scholar 

  • Sheen J, Hwang S, Niwa Y, Kobayashi H, Galbraith DW (1995) Green-fluorescent protein as a new vital marker in plant cells. Plant J 8: 777–784

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113: 1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Wilton AC, Murray JJ, Heggestad HE, Juska FV (1972) Tolerance and susceptibility of Kentucky bluegrass (Poa pratensis L.) cultivars to air pollution: in the field and in an ozone chamber. J Environ Qual 1: 112–114

    Article  Google Scholar 

  • Wodicka L, Dong H, Mittmann M, Ho MH, Lockhart DJ (1997) Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol 15: 1359–1367

    Article  PubMed  CAS  Google Scholar 

  • Yalpani N, Enyedi AJ, León J, Raskin I (1994) Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta 193: 372–376

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer -Verlag Tokyo

About this chapter

Cite this chapter

Saji, H. (2002). Biotechnology for Phytomonitoring. In: Omasa, K., Saji, H., Youssefian, S., Kondo, N. (eds) Air Pollution and Plant Biotechnology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68388-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68388-9_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68390-2

  • Online ISBN: 978-4-431-68388-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics