Skip to main content

Manipulation of Genes for Antioxidative Enzymes

  • Chapter
Air Pollution and Plant Biotechnology
  • 645 Accesses

Abstract

As the earth’s population and industrial productivity increase, new means of improving plant resistance against air pollutants must be developed to protect the plants from a contaminated atmospheric environment as well as to increase agricultural productivity. One strategy to achieve this is to develop plants that are more tolerant to air pollutants. Plants are stressed and resultantly damaged by air pollutants (Shimazaki et al. 1980), as well as by various other environmental factors such as some herbicides (Dodge 1975), drought (Smirnoff 1993), and low temperatures (Schöner and Krause 1990) under existing light and oxygen. Such stress and resulting damage under photooxidative conditions are called photooxidative stress and photooxidative damage, respectively. The generation of active oxygen species (AOS), such as 1O2, \({O_2}^{ - .}\), H2O2, and \( H{O^.} \), are thought to be promoted in plants during photooxidative stress induced by such environmental factors as just described (Shimazaki et al. 1980; Dodge 1975; Smirnoff 1993; Schöner and Krause 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107: 1049–1054

    PubMed  CAS  Google Scholar 

  • Aono M, Kubo A, Saji H, Natori T, Tanaka K, Kondo N (1991) Resistance to AOS toxicity of transgenic Nicotiana tabacum that expresses the gene for glutathione reductase from Escherichia coli. Plant Cell Physiol 32: 691–697

    CAS  Google Scholar 

  • Aono M, Kubo A, Saji H, Tanaka K, Kondo N (1993) Enhanced tolerance to photooxidative stress of transgenic Nicotiana tubacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol 34: 129–135

    CAS  Google Scholar 

  • Aono M, Saji H, Sakamoto A, Tanaka K, Kondo N, Tanaka K (1995) Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase. Plant Cell Physiol 36: 1687–1691

    PubMed  CAS  Google Scholar 

  • Aono M, Ando M, Nakajima N, Kubo A, Kondo N, Tanaka K, Saji H (1998) Response to photooxidative stress of transgenic tobacco plants with altered activities of antioxidant enzymes. In: De Kok LJ, Stulen I (Eds) Responses of plant metabolism to air pollution and global change. Backhuys Publishers, Leiden, pp 269–272

    Google Scholar 

  • Asada K (1992) Ascorbate peroxidase - a hydrogen peroxide scavenging enzyme in plants. Plant Physiol 85: 235–241

    Article  CAS  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, Inzé D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10: 1723–1732.

    PubMed  CAS  Google Scholar 

  • Bowler C, Van Camp W, Van Montague M, Inze D (1994) Superoxide dismutase in plants. Crit Rev Plant Sci 13: 199–218

    CAS  Google Scholar 

  • Broadbent P, Creissen GP, Kular B, Wellburn AR, Mullineaux P (1995) Oxidative stress responses in transgenic tobacco containing altered levels of glutathione reductase activity. Plant J 8: 247–255

    Article  CAS  Google Scholar 

  • Dodge AD (1975) Some mechanisms of herbicide action. Sci Prog 62: 447–466

    CAS  Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of mutiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180: 278–284

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133: 21–25

    Article  Google Scholar 

  • Foyer CH, Lelandais M, Galap C, Kunert KJ (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol 97: 863–872

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, vost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109: 1047–1057

    Article  PubMed  CAS  Google Scholar 

  • Gillham DJ, Dodge AD (1986) Hydrogen-peroxide-scavenging systems within pea chloroplasts. A quantitative study. Planta 167: 246–251

    Article  CAS  Google Scholar 

  • Holmberg N, Bülow L (1998) Improving stress tolerance in plants by gene transfer. Trends Plant Sci 3: 61–66

    Article  Google Scholar 

  • Kubo A, Saji H, Tanaka K, Tanaka K, Kondo N (1992) Cloning and sequencing of a cDNA encoding ascorbate peroxidase from Arabidopsis thaliana. Plant Mol Biol 18: 691–701

    Article  PubMed  CAS  Google Scholar 

  • Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S, Galun E (1993) Enhanced oxidative-stress defence in transgenic potato expressing tomato Cu, Zn superoxide dismutases. Theor Appl Genet 85: 568–576

    Article  CAS  Google Scholar 

  • Pitcher LH, Brennan E, Hurley A, Dumsmuir P, Tepperman JM, Zilinskas BA (1991) Overproduction of petunia copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol 97: 452–455

    Article  PubMed  CAS  Google Scholar 

  • Pitcher LH, Repetti P, Zilinskas BA (1994) Overproduction of ascorbate peroxidase protects transgenic tobacco plants against oxidative stress (abstract 623). Plant Physiol 105:S-169

    Google Scholar 

  • Rennenberg H, Polle A (1994) Protection from oxidative stress in transgenic plants. Biochem Soc Trans 22: 936–940

    PubMed  CAS  Google Scholar 

  • Saji H, Aono M, Kubo A, Tanaka K, Kondo N (1996) Paraquat sensitivity of transgenic Nicotiana tabacum plants that overproduce a cytosolic ascorbate peroxidase. Environ Sci 9: 241–248

    Google Scholar 

  • Sakaki T, Kondo N, Sugahara K (1983) Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation: role of active oxygens. Physiol Plant 59: 28–34

    Article  CAS  Google Scholar 

  • Sakamoto A, Tanaka K (1993) Expression of superoxide dismutase genes and stress tolerance of transgenic tobacco. In: Phenotypic expression and mechanisms of environmental adaptation in plants. IGE series 17. Institute of Genetic Ecology, Tohoku University, Sendai, pp 111–121

    Google Scholar 

  • Schöner S, Krause GH (1990) Protective systems against active oxygen species in spinach: response to cold acclimation in excess light. Planta 180: 383–389

    Article  Google Scholar 

  • Sen Gupta A, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that over-express chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90: 1629–1633

    Article  CAS  Google Scholar 

  • Shikanai T, Takeda T, Yamauchi H, Sano S, Tomizawa K, Yokota A, Shigeoka S (1998) Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Lett 428: 47–51

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki K, Sakaki T, Kondo N, Sugahara K (1980) Active oxygen participation in chlorophyll destruction and lipid peroxidation in SO2-fumigated leaves of spinach. Plant Cell Physiol 21: 1193–1204

    CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125: 27–58

    Article  CAS  Google Scholar 

  • Smith I, Polle A, Rennenberg H (1990) In: Alscher RG, Cumming JR (eds) Stress response in plants: adaptation and acclimation mechanisms. Wiley-Liss, New York, pp 201–215

    Google Scholar 

  • Van Breusegem F, Slooten L, Stassart J-M, Moens T, Botterman J, Van Montagu M, Inzé D (1999) Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol 40: 515–523

    PubMed  Google Scholar 

  • Van Camp W, Willekens H, Bowler C, Van Montague M, Inzé D (1994) Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Bio/Technology 12: 165–168

    Article  Google Scholar 

  • Van Camp W, Capiau K, Van Montagu M, Inze D, Slooten L (1996) Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol 112: 1703–1714

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer -Verlag Tokyo

About this chapter

Cite this chapter

Aono, M. (2002). Manipulation of Genes for Antioxidative Enzymes. In: Omasa, K., Saji, H., Youssefian, S., Kondo, N. (eds) Air Pollution and Plant Biotechnology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68388-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68388-9_21

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68390-2

  • Online ISBN: 978-4-431-68388-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics